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1 Introduction

We use the q-theory of investment to derive and test predictions for the cross section of stock returns.

Under constant returns to scale, stock returns equal levered investment returns, which are directly

tied to firm characteristics via the conditions for optimal investment. We use Generalized Methods

of Moments (GMM) to match means and variances of levered investment returns with those of stock

returns. We conduct the GMM tests using data on portfolios sorted by earnings surprises, book-to-

market equity, and capital investment—firm characteristics that are tied closely to cross sectional

patterns in returns. We also compare the performance of the q-theory model with the performance

of traditional asset pricing models such as the Capital Asset Pricing Model (CAPM), the Fama-

French (1993) three-factor model, and the standard consumption CAPM with power utility.

The q-theory model outperforms traditional asset pricing models in matching expected returns.

We estimate an average pricing error of 0.74% per annum for ten equal-weighted portfolios sorted

by earnings surprises. This average error is much lower than those from the CAPM, 5.67%, the

Fama-French model, 4.01%, and the standard consumption CAPM, 3.62%. The error for the return

on the portfolio that is long on high earnings surprise stocks and short on low earnings surprise

stocks (high-minus-low earnings surprise portfolio) is −0.40% per annum. This error is negligible

compared to the errors of 12.55% from the CAPM, 14.06% from the Fama-French model, and

13.38% from the standard consumption CAPM. Similarly, the q-theory model produces an error

for the high-minus-low book-to-market portfolio of only 1.21%, which is substantially smaller than

18.56% from the CAPM, 7.30% from the Fama-French model, and 12.31% from the standard con-

sumption CAPM. Finally, the high-minus-low investment portfolio has an error from the q-theory

model of −0.49%, which is much smaller than the error of −6.30% from the CAPM, −6.34% from

the Fama-French model, and −8.38% from the standard consumption CAPM.

When we use the q-theory model to match both the average returns and variances of the testing

portfolios, the variances predicted by the model are largely comparable to stock return variances.

The average stock return volatility across the earnings surprise portfolios is 21.06% per annum,

which is close to the average levered investment return volatility of 20.43%. The average realized

and predicted volatilities also are close for the book-to-market portfolios: 24.99% versus 23.55%,

and for the investment portfolios: 24.84% versus 24.35%. However, the model falls short in two

ways. First, while we find no discernible relation between volatilities and firm characteristics in

the data, the model predicts a positive relation between volatilities and book-to-market. Second,
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average return errors vary systematically with earnings surprises and investment, and are compara-

ble in magnitude to those from the traditional models. However, the q-theory model still performs

better in matching the average returns of the book-to-market portfolios.

Although q-theory originates in Brainard and Tobin (1968) and Tobin (1969), our work is built

more directly on Cochrane (1991), who first uses q-theory to study stock market returns, as well as

on Cochrane (1996), who uses aggregate investment returns to parameterize the stochastic discount

factor in cross-sectional tests. Several more recent articles model cross-sectional returns based on

firms’ dynamic optimization problems (e.g., Berk, Green, and Naik (1999) and Zhang (2005)). We

differ by doing structural estimation of closed-form Euler equations. Our work is also connected to

the literature that estimates investment Euler equations using aggregate or firm level investment

data (e.g., Shapiro (1986) and Whited (1992)). Our work differs because we use this framework to

study the cross section of returns rather than investment dynamics or financing constraints. Most

important, our q-theory approach to understanding cross-sectional returns represents a fundamen-

tal departure from the traditional consumption-based approach (e.g., Hansen and Singleton (1982)

and Lettau and Ludvigson (2001)) in that we do not make any assumptions on preferences.

2 The Model of the Firms

Time is discrete and the horizon infinite. Firms use capital and costlessly adjustable inputs to

produce a homogeneous output. These latter inputs are chosen each period to maximize operating

profits, defined as revenues minus the expenditures on these inputs. Taking operating profits as

given, firms choose optimal investment to maximize the market value of equity.

Let Π(Kit,Xit) denote the maximized operating profits of firm i at time t. The profit func-

tion depends on capital, Kit, and a vector of exogenous aggregate and firm-specific shocks, Xit.

The profit function exhibits constant returns to scale, that is, Π(Kit,Xit) = Kit∂Π(Kit,Xit)/∂Kit.

If firm i has a Cobb-Douglas production function, the marginal product of capital is given by

∂Π(Kit,Xit)/∂Kit = αYit/Kit, in which α > 0 is capital’s share and Yit is sales. This parametriza-

tion assumes that shocks to operating profits, Xit, are reflected in sales.

End-of-period capital equals investment plus beginning-of-period capital net of depreciation:

Kit+1 = Iit+(1−δit)Kit, in which capital depreciates at an exogenous proportional rate of δit, which

is firm-specific and time-varying. Firms incur adjustment costs when investing. The adjustment

cost function, denoted Φ(Iit,Kit), is increasing and convex in Iit, decreasing in Kit, and exhibits con-
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stant returns to scale in Iit and Kit, that is, Φ(Iit,Kit) = Iit∂Φ(Iit,Kit)/∂Iit+Kit∂Φ(Iit,Kit)/∂Kit.

We use a standard quadratic functional form: Φ(Iit,Kit) = (a/2) (Iit/Kit)
2 Kit.

Firms can finance investment with debt. We follow Hennessy and Whited (2007) and model only

one-period debt. At the beginning of time t, firm i can issue an amount of debt, denoted Bit+1, which

must be repaid at the beginning of period t+1. The gross corporate bond return on Bit, denoted rB
it ,

can vary across firms and over time. Taxable corporate profits equal operating profits less capital

depreciation, adjustment costs, and interest expenses: Π(Kit,Xit)−δitKit−Φ(Iit,Kit)−(rB
it −1)Bit,

in which adjustment costs are expensed, consistent with treating them as forgone operating profits.

Let τ t denote the corporate tax rate at time t. The payout of firm i equals:

Dit ≡ (1 − τ t)[Π(Kit,Xit) − Φ(Iit,Kit)] − Iit + Bit+1 − rB
it Bit + τ tδitKit + τ t(r

B
it − 1)Bit, (1)

in which τ tδitKit is the depreciation tax shield and τ t(r
B
it − 1)Bit is the interest tax shield.

Let Mt+1 be the stochastic discount factor from t to t+1, which is correlated with the aggregate

component of Xit+1. We can formulate the cum-dividend market value of equity as follows:

Vit ≡ max
{Iit+s,Kit+s+1,Bit+s+1}∞s=0

Et

[

∞
∑

s=0

Mt+sDit+s

]

, (2)

subject to a transversality condition that prevents firms from borrowing an infinite amount to

distribute to shareholders: limT→∞ Et [Mt+T Bit+T+1] = 0.

Proposition 1. Firms’ value-maximization implies that Et[Mt+1r
I
it+1] = 1, in which rI

it+1 is the

investment return, defined as:

rI
it+1 ≡

(1 − τ t+1)

[

α Yit+1

Kit+1
+ a

2

(

Iit+1

Kit+1

)2
]

+ τ t+1δit+1 + (1 − δit+1)
[

1 + (1 − τ t+1)a
(

Iit+1

Kit+1

)]

1 + (1 − τ t)a
(

Iit

Kit

) . (3)

Define the after-tax corporate bond return as rBa
it+1 ≡ rB

it+1−(rB
it+1−1)τ t+1, then Et[Mt+1r

Ba
it+1] = 1.

Define Pit ≡ Vit − Dit as the ex-dividend equity value, rS
it+1 ≡ (Pit+1 + Dit+1)/Pit as the stock

return, and wit ≡ Bit+1/(Pit + Bit+1) as the market leverage, then the investment return is the

weighted average of the stock return and the after-tax corporate bond return:

rI
it+1 = wit rBa

it+1 + (1 − wit) rS
it+1. (4)

Proof. See Appendix A.
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The investment return in equation (3) is the ratio of the marginal benefit of investment at time

t + 1 divided by the marginal cost of investment at t. Optimality means that the marginal cost

of investment in the denominator equals the marginal benefit (marginal q), which is the expected

present value of the marginal profits from investing in one additional unit of capital. In the numer-

ator the term (1−τ t+1)αYit+1/Kit+1 is the marginal after-tax profit produced by an additional unit

of capital, the term (1− τ t+1)(a/2)(Iit+1/Kit+1)
2 is the marginal after-tax reduction in adjustment

costs, the term τ t+1δit+1 is the marginal depreciation tax shield, and the last term in the numerator

is the marginal continuation value of an extra unit of capital net of depreciation. In addition, the

first term in brackets in the numerator divided by the denominator is analogous to a dividend yield.

The second term in brackets in the numerator divided by the denominator is analogous to a capital

gain because this ratio is the growth rate of marginal q.

Equation (4) is exactly the weighted average cost of capital in corporate finance. Without

leverage, this equation reduces to the equivalence between stock and investment returns, a relation

first established by Cochrane (1991), and is an algebraic restatement of the equivalence between

marginal q and average q established by Hayashi (1982). Solving for rS
it+1 from equation (4) gives:

rS
it+1 = rIw

it+1 ≡

rI
it+1 − wit rBa

it+1

1 − wit
, (5)

in which rIw
it+1 is the levered investment return.

3 Econometric Methodology

3.1 Moments for GMM Estimation and Tests

To test whether cross-sectional variation in average stock returns matches cross-sectional varia-

tion in firm characteristics, we test the ex-ante restriction implied by equation (5): expected stock

returns equal expected levered investment returns,

E
[

rS
it+1 − rIw

it+1

]

= 0. (6)

A long-standing puzzle in financial economics is that stock returns are excessively volatile (e.g.,

Shiller (1981)). Cochrane (1991) reports that the annual aggregate investment return volatility

is only about 60% of the annual value-weighted stock market volatility. To study whether the

q-theory model can reproduce empirically plausible stock return volatilities, we also test whether
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stock return variances equal levered investment return variances:

E
[

(

rS
it+1 − E

[

rS
it+1

])2
−

(

rIw
it+1 − E

[

rIw
it+1

])2
]

= 0. (7)

As noted by Cochrane (1991), equation (5), taken literally, says that levered investment re-

turns equal stock returns for every stock, every period, and every state of the world. Because no

choice of parameters can satisfy these conditions, equation (5) is formally rejected at any level of

significance. However, we can test the weaker conditions in equations (6) and (7). To do so, we

must add statistical assumptions about the sources of error that might invalidate these two moment

conditions (model errors). These errors arise because of either measurement or specification issues.

For example, components of investment returns such as the capital stock are difficult to measure;

adjustment costs might not be quadratic; and the marginal product of capital might not be exactly

proportional to the sales-to-capital ratio.

To construct a formal test of equation (5), we define the model errors from the empirical mo-

ments as follows:

eq
i ≡ ET

[

rS
it+1 − rIw

it+1

]

, (8)

eσ2

i ≡ ET

[

(

rS
it+1 − ET

[

rS
it+1

])2
−

(

rIw
it+1 − ET

[

rIw
it+1

])2
]

, (9)

in which ET [·] is the sample mean of the series in brackets. We call eq
i the mean error and eσ2

i the

variance error, and assume that both errors have a mean of zero. While recognizing that specifica-

tion and measurement errors, unlike forecast errors, do not necessarily have a zero mean, we note

that this assumption is simple and that similar assumptions underlie most Euler equation tests.1

We estimate the parameters a and α using GMM to minimize a weighted average of eq
i or a

weighted average of both eq
i and eσ2

i . We use the identity weighting matrix in one-stage GMM to

preserve the economic structure of the testing assets. After all, we choose testing assets precisely

because the underlying characteristics are economically important in providing a wide spread in the

cross section of average stock returns. The identity weighting matrix also gives potentially more

robust, albeit less efficient, estimates. The estimates from second-stage GMM are similar to the

1Cochrane (1991, p. 220) articulates this point as follows: “The consumption-based model suffers from the same
problems: unobserved preference shocks, components of consumption that enter nonseparably in the utility function
(for example, the service flow from durables), and measurement error all contribute to the error term, and there is no
reason to expect these errors to obey the orthogonality restrictions that the forecast error obeys. Empirical work on
consumption-based models focuses on the forecast error since it has so many useful properties, but the importance
in practice of these other sources of error may be part of the reason for its empirical difficulties.”
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first-stage estimates. To conduct inferences, we nevertheless need to calculate the optimal weighting

matrix. We use a standard Bartlett kernel with a window length of five. The results are insensitive

to the window length. To test whether all (or a subset of) model errors are jointly zero, we use a

χ2 test from Hansen (1982, Lemma 4.1). Appendix B provides additional econometric details.

We conduct the GMM estimation and tests at the portfolio level. The main reason is that the

stylized facts in cross-sectional returns we wish to understand are most evident in portfolio level

data. As such, the usage of portfolios befits our economic question. Further, the portfolio approach

has the advantage that portfolio investment data are relatively smooth, whereas investment data

are lumpy at the firm level, probably because of nonconvex adjustment costs (e.g., Whited (1998)).

In addition, Thomas (2002) shows that aggregation substantially reduces the effect of lumpy in-

vestment in equilibrium business cycle models, and Hall (2004) shows that nonconvexities are not

important for estimating investment Euler equations at the industry level. Conducting GMM tests

using returns at the firm level with nonconvexities embedded into our framework is a potentially

interesting extension, but is unnecessary for understanding cross-sectional return patterns.

3.2 Data

We construct annual levered investment returns to match annual stock returns. Our sample of firm-

level data is from the Center for Research in Security Prices (CRSP) monthly stock file and the

annual and quarterly 2005 Standard and Poor’s Compustat industrial files. We select our sample

by first deleting any firm-year observations with missing data or for which total assets, the gross

capital stock, debt, or sales are either zero or negative. We include only firms with fiscal yearend

in December. Firms with primary SIC classifications between 4900 and 4999 or between 6000 and

6999 are omitted because q-theory is unlikely to be applicable to regulated or financial firms.

3.2.1 Portfolio Definitions

We use 30 testing portfolios: ten Standardized Unexpected Earnings (SUE) portfolios as in Chan,

Jegadeesh, and Lakonishok (1996), ten book-to-market (B/M) portfolios as in Fama and French

(1993), and ten corporate investment (CI) portfolios as in Titman, Wei, and Xie (2004). SUE is a

measure of earnings surprises or shocks to earnings, B/M is the ratio of accounting value of equity

divided by the market value of equity, and CI is a measure of firm-level capital investment. The

relations of stock returns with SUE and B/M represent what are arguably the two most important

stylized facts in the cross section of returns (e.g., Fama (1998)). We use the CI portfolios because
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our framework characterizes optimal investment behavior. We use equal-weighted returns for all

testing portfolios because equal-weighted returns are harder for asset pricing models to capture

than value-weighted returns. Our basic results are similar if we value-weight portfolio returns.

Ten SUE Portfolios. Following Chan, Jegadeesh, and Lakonishok (1996), we define SUE as the

change in quarterly earnings (Compustat quarterly item 8) per share from its value four quarters

ago divided by the standard deviation of the change in quarterly earnings over the prior eight quar-

ters. We rank all stocks by their most recent SUEs at the beginning of each month t and assign all

the stocks to one of ten portfolios using NYSE breakpoints. We calculate average monthly returns

over the holding period from month t + 1 to t + 6. The sample is from January 1972 to December

2005. The starting point is restricted by the availability of quarterly earnings data.

Ten B/M Portfolios. Following Fama and French (1993), we sort all stocks at the end of June

of year t into ten groups based on NYSE breakpoints for B/M. The sorting variable for June of

year t is book equity for the previous fiscal yearend in year t−1 divided by the market value of

common equity for December of year t−1. Book equity is common equity (Compustat annual item

60) plus balance sheet deferred tax (item 74). The market value of common equity is the closing

price per share (item 199) times the number of common shares outstanding (item 25). We calculate

equal-weighted annual returns from July of year t to June of year t + 1 for the resulting portfolios,

which are rebalanced at the end of each June. The sample is from January 1963 to December 2005.

Ten CI Portfolios. Following Titman, Wei, and Xie (2004), we define CIt−1, the sorting variable

in the portfolio formation year t, as CEt−1/[(CEt−2+CEt−3+CEt−4)/3], in which CEt−1 is capital

expenditures (Compustat annual item 128) scaled by sales (item 12) in year t−1. The prior three-

year moving average of CE aims to measure the benchmark investment level. We sort all stocks on

CI at the end of June of year t into ten portfolios using breakpoints based on NYSE, Amex, and

Nasdaq stocks. Equal-weighted annual portfolio returns are calculated from July of year t to June

of year t + 1. The sample runs from January 1963 to December 2005.

3.2.2 Variable Measurement

Capital, Investment, Output, Debt, Leverage, and Depreciation. The capital stock, Kit, is gross

property, plant, and equipment (Compustat annual item 7), and investment, Iit, is capital

expenditures minus sales of property, plant, and equipment (the difference between items 128 and

107). We set sales of property, plant, and equipment to be zero when item 107 is missing. Our basic
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results are similar when we measure the capital stock as the net property, plant, and equipment

(item 8) and investment as item 128. Output, Yit, is sales (item 12), and total debt, Bit, is long-term

debt (item 9) plus short term debt (item 34). Our basic results are similar when we use the Bernanke

and Campbell (1988) algorithm to convert the book value of debt into the market value of debt. We

measure market leverage as the ratio of total debt to the sum of total debt and the market value of

equity. The depreciation rate, δit, is the amount of depreciation (item 14) divided by capital stock.

Both stock and flow variables in Compustat are recorded at the end of year t. However, the

model requires stock variables subscripted t to be measured at the beginning of year t and flow

variables subscripted t to be measured over the course of year t. We take, for example, for the year

1993 any beginning-of-period stock variable (such as Ki1993) from the 1992 balance sheet and any

flow variable measured over the year (such as Ii1993) from the 1993 income or cash flow statement.

We follow Fama and French (1995) in aggregating firm-specific characteristics to portfolio-level

characteristics: Yit+1/Kit+1 is the sum of sales in year t+1 for all the firms in portfolio i formed

in June of year t divided by the sum of capital stocks at the beginning of t+1 for the same firms;

Iit+1/Kit+1 in the numerator of rI
it+1 is the sum of investment in year t+1 for all the firms in

portfolio i formed in June of year t divided by the sum of capital stocks at the beginning of t+1 for

the same firms; Iit/Kit in the denominator of rI
it+1 is the sum of investment in year t for all the firms

in portfolio i formed in June of year t divided by the sum of capital stocks at the beginning of year t

for the same firms; and δit+1 is the total amount of depreciation for all the firms in portfolio i formed

in June of year t divided by the sum of capital stocks at the beginning of t+1 for the same firms.

Corporate Bond Returns. Firm-level corporate bond data are rather limited, and few or none

of the firms in several portfolios have corporate bond ratings. To construct bond returns, rB
it+1, for

firms without bond ratings, we follow closely the approach in Blume, Lim, and MacKinlay (1998)

for imputing bond ratings not available in Compustat. First, we estimate an ordered probit model

that relates categories of credit ratings to observed explanatory variables. We estimate the model

using all the firms that have data on credit ratings (Compustat annual item 280). Second, we use

the fitted value to calculate the cutoff value for each rating. Third, for firms without credit ratings

we estimate their credit scores using the coefficients estimated from the ordered probit model and

impute bond ratings by applying the cutoff values for the different credit ratings. Finally, we assign

the corporate bond returns for a given credit rating from Ibbotson Associates as the corporate bond

returns to all the firms with the same credit rating.

8



The explanatory variables in the ordered probit model are interest coverage defined as the ratio

of operating income after depreciation (item 178) plus interest expense (item 15) divided by interest

expense, the operating margin as the ratio of operating income before depreciation (item 13) to

sales (item 12), long-term leverage as the ratio of long-term debt (item 9) to assets (item 6), total

leverage as the ratio of long-term debt plus debt in current liabilities (item 34) plus short-term bor-

rowing (item 104) to assets, and the natural log of the market value of equity deflated to 1973 by

the Consumer Price Index (item 24 times item 25). Following Blume, Lim, and MacKinlay (1998),

we also include the market beta and residual volatility from the market model. For each calendar

year we estimate the beta and residual volatility for each firm with at least 200 daily returns. Daily

stock returns and value-weighted market returns are from CRSP. We adjust for nonsynchronous

trading with one leading and one lagged value of the market return.

The Corporate Tax Rate. We measure τ t as the statutory corporate income tax rate. From

1963 to 2005, the tax rate is on average 42.3%. The statutory rate starts at around 50% in the

beginning years of our sample, drops from 46% to 40% in 1987 and further to 34% in 1988, and

stays at that level afterward. The source is the Commerce Clearing House, annual publications.

We have experimented with firm-specific tax rates using the trichotomous variable approach of

Graham (1996). The trichotomous variable is equal to i) the statutory corporate income tax rate

if the taxable income defined as pretax income (Compustat annual item 170) minus deferred taxes

(item 50) divided by the statutory tax rate is positive and net operating loss carryforward (item

52) is nonpositive; ii) one-half of the statutory rate if one and only one condition in i) is violated;

and iii) zero otherwise. The trichotomous variable does not vary much across our testing portfolios.

The portfolio-level tax rate is on average 36.0% for the low SUE portfolio, 37.9% for the high SUE

portfolio, 34.8% for the low CI portfolio, and 37.4% for the high CI portfolio. The spread across

the B/M portfolios is only slightly larger: the tax rate is 40.2% in the low B/M portfolio and

35.1% in the high B/M portfolio. As such, we use time-varying but portfolio invariant tax rates

for simplicity. The results are largely similar using portfolio-specific tax rates.

3.2.3 Timing Alignment

To match annual levered investment returns with annual stock returns, we need to align the timing

across the two types of returns. Figure 1 illustrates the timing convention. Specifically, we use the

Fama-French portfolio approach to form the B/M and CI portfolios by sorting stocks in June of year

t based on characteristics at the end of fiscal year t−1. The characteristics used to sort portfolios in
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year t are measured at the end of year t−1 or, equivalently, the beginning of year t. Portfolio stock

returns, rS
it+1, are calculated from July of year t to June of year t+1, and the portfolios are rebalanced

in June of year t+1. To construct the annual investment returns in equation (3), rI
it+1, we use the

tax rate and investment observed at the end of year t (τ t and Iit) and other variables at the end of

year t+1 (τ t+1, Yit+1, Iit+1, and δit+1). Because time t stock variables are measured at the beginning

of year t, and because time t flow variables are realized over the course of year t, the investment

return constructed using Iit,Kit, Yit+1, Iit+1, δit+1, and Kit+1 in equation (3) goes roughly from the

middle of year t to the middle of year t+1. The bottomline is that the investment return timing

matches naturally with the stock return timing from the Fama-French portfolio approach.

Figure 1: Timing Alignment between Annual Stock and Investment Returns

Kit+1

t+1

December/January

rS
it+1

rB
it+1, r

Ba
it+1

-�

rI
it+1

-�

(from July of year t

to June of t+1)

(from July of year t

to June of t+1)

June/July

Kit

t

December/January

Kit+2

t+2

December/January

June/July

τ t+1, δit+1

Yit+1, Iit+1
-�

(from January of year t+1

to December of t+1)

τ t, Iit
-�

(from January of year t

to December of t)

The changes in stock composition in a given portfolio from portfolio rebalancing raise further

subtleties. In the Fama-French portfolio approach, for the annually rebalanced B/M and CI portfo-

lios, the set of firms in a given portfolio formed in year t is fixed when we aggregate returns from July

of year t to June of t+1. The stock composition changes only at the end of June of year t+1 when we

rebalance. Correspondingly, we fix the set of firms in a given portfolio in the formation year t when
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aggregating characteristics, dated both t and t + 1, across firms in the portfolio. In particular, to

construct the numerator of rI
it+1, we use Iit+1/Kit+1 from the portfolio formation year t, which is dif-

ferent from the Iit+1/Kit+1 from the formation year t+1 used to construct the denominator of rI
it+2.

The SUE portfolios are initially formed monthly. We time-aggregate monthly returns of the SUE

portfolios from July of year t to June of t+1 to obtain annual returns. Constructing the matching

annual investment returns, rI
it+1, requires care because the composition of the SUE portfolios

changes from month to month. First, consider the 12 low SUE portfolios formed in each month

from July of year t to June of t+1. For each month we calculate portfolio level characteristics by

aggregating individual characteristics over the firms in the low SUE portfolio. We use the following

specific characteristics: Iit and τ t observed at the end of year t, Kit at the beginning of year t,

Kit+1 at the beginning of t+1, and τ t+1, Yit+1, Iit+1, and δit+1 at the end of year t+1. Because the

portfolio composition changes from month to month, these portfolio level characteristics also change

from month to month. We therefore average these portfolio characteristics over the 12 monthly low

SUE portfolios, and use these averages to construct rI
it+1, which is in turn matched with the annual

rS
it+1 from July of t to June of t+1. We then repeat this procedure for the remaining SUE portfolios.

The after-tax corporate bond return, rBa
it+1, depends on the tax rate and the pre-tax bond re-

turn, rB
it+1, which we measure as the observed corporate bond returns in the data. The timing of

rB
it+1 is the same as that of stock returns: after sorting stocks on characteristics measured at the

end of fiscal year t−1, we measure rB
it+1 as the equal-weighted corporate bond return from July of

year t to June of t+1. However, calculating rBa
it+1 = rB

it+1 − (rB
it+1 − 1)τ t+1 is slightly complicated:

τ t+1 is applicable from January to December of year t+1, but rB
it+1 is applicable from July of year

t to June of t+1. We deal with this timing-mismatch by replacing τ t+1 in the calculation of rBa
it+1

with the average of τ t and τ t+1 in the data. This timing-mismatch matters little for our results

because the tax rate exhibits little time series variation. In particular, we have experimented with

time-invariant tax rates in calculating rBa
it+1, and the results are largely similar.

4 Empirical Results

Section 4.1 reports tests of the CAPM, the Fama-French model, and the standard consumption

CAPM on our portfolios. Sections 4.2 and 4.3 report tests of the q-theory model in matching

expected returns and in matching both expected returns and variances, respectively.
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4.1 Testing Traditional Asset Pricing Models

To test the CAPM, we regress annual portfolio returns in excess of the risk-free rate on market ex-

cess returns. The risk-free rate, denoted rft+1, is the annualized return on the one-month Treasury

bill from Ibbotson Associates. The regression intercept measures the model error from the CAPM.

To test the Fama-French model, we regress annual portfolio excess returns on annual returns of

the market factor, a size factor, and a book-to-market factor (the factor returns data are from

Kenneth French’s Web site). The intercept measures the error of the Fama-French model. We

also estimate the standard consumption CAPM with the pricing kernel Mt+1 = β(Ct+1/Ct)
−γ , in

which β is time preference coefficient, γ is risk aversion, and Ct is annual per capita consumption

of nondurables and services from the Bureau of Economic Analysis. We use one-stage GMM with

the identity weighting matrix to estimate the moments E[Mt+1(r
S
it+1−rft+1)] = 0. We also include

E[Mt+1rft+1] = 1 as an additional moment condition to identify β. The error of the standard

consumption CAPM is calculated as ET [Mt+1(r
S
it+1 − rft+1)]/ET [Mt+1].

The SUE, B/M, and CI effects cannot be captured by traditional asset pricing models. Panel

A of Table 1 shows that from the low SUE to the high SUE portfolio the average return in-

creases monotonically from 10.89% to 23.39% per annum. The portfolio volatilities are largely flat

at around 22%. The CAPM error of the high-minus-low SUE portfolio is 12.55% per annum (t =

5.53), and the average absolute value of the pricing errors, denoted a.a.p.e., is 5.67%. The Gibbons,

Ross, and Shanken (1989, GRS) statistic, which tests the null hypothesis that all the individual

intercepts are jointly zero, rejects the CAPM. (The intercepts do not add up to zero because we

equal-weight the portfolio returns.) The performance of the Fama-French model is similar: the

a.a.p.e. is 4.01% and the GRS test rejects the model. The error of the high-minus-low SUE port-

folio from the Fama-French model is 14.06% per annum (t = 5.31). The consumption CAPM error

increases from −8.07% for the low SUE portfolio to 5.13% per annum for the high SUE portfolio.

Although the errors are not individually significant, probably because of large measurement errors

in consumption data, the χ2 test rejects the null hypothesis that the pricing errors are jointly zero

at the 1% significance level. The parameter estimates also are unrealistic: the estimate of the time

preference coefficient is 2.76, and estimate of the risk aversion parameter is 127.59.

Panel B of Table 1 shows that value stocks with high B/M ratios earn higher average stock

returns than growth stocks with low B/M ratios, 25.78% versus 8.65% per annum. The difference

of 17.13% is significant (t = 5.53). There is no discernible relation between B/M and stock return
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volatility: both the value and the growth portfolios have volatilities around 27%. The CAPM error

increases monotonically from −4.91% for growth stocks to 13.65% for value stocks. The average

magnitude of the errors is 6.34% per annum and the GRS test strongly rejects the CAPM. Even the

Fama-French model fails to capture the equal-weighted returns: the high-minus-low portfolio has an

error of 7.30% (t = 3.25). The consumption CAPM error increases from −5.43% for growth stocks to

6.88% for value stocks with an average magnitude of 2.36%, and the model is rejected by the χ2 test.

From Panel C, high CI stocks earn lower average stock returns than low CI stocks: 15.16%

versus 22.12% per annum, and the difference is more than four standard errors from zero. The

volatilities of the low CI stocks are slightly higher than those of the high CI stocks: 32.42% versus

26.73%. The high-minus-low CI portfolio has an error of −6.30% (t = −3.88) from the CAPM and

an error of −6.34% (t = −3.99) from the Fama-French model. Both models are rejected by the

GRS test. The consumption CAPM error decreases from 4.03% for the low CI portfolio to −4.35%

for the high CI portfolio with an average magnitude of 2.36%, and the χ2 test rejects the model.

4.2 The q-theory Model: Matching Expected Returns

4.2.1 Point Estimates and Overall Model Performance

We estimate only two parameters in our parsimonious model: the adjustment cost parameter, a,

and capital’s share, α. Panel A of Table 2 provides estimates of α that range from 0.21 to 0.50,

and are often significant. These estimates are reasonably close to the approximate 0.30 figure for

capital’s share used in Rotemberg and Woodford (1992). The estimates of a are not as stable

across the different sets of testing portfolios. We find significant estimates of 7.68 and 0.97 for

the SUE and CI portfolios, respectively. The estimate is 22.34 for the B/M portfolios but with a

high standard error of 25.47. Although some of these estimates of a are large, they fall within the

wide range of estimates from studies using quantity data. Finally, the evidence implies that firm’s

optimization problem has an interior solution because the positive estimates of a mean that the

adjustment cost function is increasing and convex in Iit.

Panel A of Table 2 also reports two measures of overall model performance: the average absolute

pricing error, a.a.p.e., and the χ2 test. The model performs quite well in accounting for the average

returns of the ten SUE portfolios. The a.a.p.e. is 0.74% per annum, which is substantially lower

than those from the CAPM, 5.67%, the Fama-French model, 4.01%, and the standard consump-

tion CAPM, 3.62%. Unlike the traditional models that are rejected using the SUE portfolios, the

q-theory model is not rejected by the χ2 test. The overall performance of the model is more modest
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in capturing the average B/M portfolio returns. Although the model is not formally rejected by

the χ2 test, the a.a.p.e. is 2.32% per annum, which is comparable to that from the Fama-French

model, 2.79%, and that from the standard consumption CAPM, 2.36%, but is lower than that from

the CAPM, 6.34%. The model does better in pricing the ten CI portfolios. The a.a.p.e. is 1.51%

per annum, which is lower than those from the CAPM, 5.71%, the Fama-French model, 2.24%, and

the standard consumption CAPM, 2.36%. The q-theory model is again not rejected by the χ2 test.

4.2.2 Euler Equation Errors

The average absolute pricing errors and χ2 tests only indicate overall model performance. To

provide a more complete picture, we report each individual portfolio error, eq
i , defined in equation

(8), in which levered investment returns are constructed using the estimates from Panel A of Table 2.

We also report the t-statistic, described in Appendix B, testing that an individual error equals zero.

Panel A of Table 3 reports that the magnitude of the individual mean errors varies from 0.05%

to 1.72% per annum across ten SUE portfolios. None of the mean errors are significant. In partic-

ular, the high-minus-low SUE portfolio has a mean error of −0.40% per annum (t = −0.34), which

is negligible compared to the economically large errors from the traditional models: 12.55% for the

CAPM, 13.38% for the Fama-French model, and 14.06% for the standard consumption CAPM.

Figure 2 provides a visual presentation of the fit. Panel A plots the average levered investment

returns of the ten SUE portfolios against their average stock returns. If the model performs per-

fectly, all the observations should lie precisely on the 45-degree line. Panel A shows that the scatter

plot from the q-theory model is closely aligned with the 45-degree line. The remaining panels

contain analogous plots for the CAPM, the Fama-French model, and the standard consumption

CAPM. In all three cases the scatter plot is largely horizontal, meaning that the traditional models

almost completely fail to predict the average returns across the SUE portfolios.

Moving to the B/M portfolios, we observe relatively large mean errors in Panel A of Table 3.

Three out of ten portfolios have mean errors with magnitudes higher than 3% per annum and six out

of ten have mean errors with magnitudes higher than 2.5%. The growth portfolio has a mean error

of −3.94%. However, the mean errors in the q-theory model do not vary systematically with B/M.

The high-minus-low B/M portfolio only has a mean error of 1.21% per annum, which is substantially

smaller than 18.56% in the CAPM, 7.30% in the Fama-French model, and 12.31% in the standard

consumption CAPM. The scatter plots in Figure 3 show that, although the errors from the q-theory
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model are largely similar in magnitude to those from the Fama-French model and the standard

consumption CAPM, the average return spread between the low and the high B/M portfolios

predicted by the q-theory model is much larger than the spreads from the traditional models.

From Panel A of Table 3, the mean errors from the CI portfolios are somewhat larger than those

from the SUE portfolios but are much smaller than those from the B/M portfolios. Only three

out of the ten CI portfolios have mean errors larger than 2.5% per annum. The high-minus-low CI

portfolio has a small mean error of −0.49% (t = −0.43), meaning that the q-theory model generates

a realistic average return spread across the two extreme CI portfolios. The scatter plot in Panel

A of Figure 4 confirms this observation. In contrast, none of the traditional models are able to

reproduce the average return spread, as shown in the rest of Figure 4.

4.2.3 Drivers of Expected Stock Returns

The intuition behind our estimation results comes from the investment return equation (3) and the

levered investment return equation (5). The equations suggest several economic forces driving the

cross section of average stock returns. The first driver operates through the marginal benefit of

investment, whose first component is the marginal product of capital at t+1 in the numerator of

the investment return. The second driver is roughly proportional to the growth rate of investment,

which corresponds to the “capital gain” component of the investment return: investment-to-capital

is an increasing function of marginal q, denoted qit, which is related to firm i’s stock price.

The third driver works through Iit/Kit in the denominator of the investment return. Because

investment today increases with the net present value of one additional unit of capital, and be-

cause the net present value decreases with the cost of capital, a low cost of capital means high

net present value and high investment. As such, investment today and average stock returns are

negatively correlated. Relatedly, because investment is an increasing function of marginal q, and

because marginal q is in turn inversely related to book-to-market equity, expected stock returns

and book-to-market equity are positively correlated.

The fourth driver is the rate of depreciation, δit+1. Collecting terms involving δit+1 in the

numerator of equation (3) yields −(1 − τ t+1)[1 + a(Iit+1/Kit+1)]δit+1, meaning that high rates of

depreciation tomorrow imply lower average returns. The fifth driver is market leverage: taking the

first-order derivative of equation (5) with respect to wit shows that expected stock returns should

increase with market leverage today. In sum, all else equal, firms with high investment-to-capital
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today, low expected investment growth, low sales-to-capital tomorrow, high rates of depreciation

tomorrow, and low market leverage today should earn lower average stock returns.

4.2.4 Expected Returns Accounting

To understand our estimation results, Table 4 presents averages of the drivers underlying levered

investment returns across testing portfolios. From Panel A, the average Iit/Kit, δit+1, and the

bond returns, rB
it+1, are largely flat across ten SUE portfolios. The average (Iit+1/Kit+1) / (Iit/Kit)

(future investment growth) and Yit+1/Kit+1 both increase from the low SUE portfolio to the high

SUE portfolio, going in the right direction to capture average stock returns. However, going in the

wrong direction, market leverage decreases from the low SUE portfolio to the high SUE portfolio.

For ten B/M portfolios, Iit/Kit decreases from 18% to 8% per annum from the low to the high

B/M portfolio. The low B/M firms also have higher rates of depreciation (10% versus 7%) and

lower market leverage (8% versus 53%) than the high B/M firms. All three characteristics go in

the right direction to match average stock returns. However, going in the wrong direction, the low

B/M firms have higher average Yit+1/Kit+1 (1.95 versus 1.38) than the high B/M firms. Average

corporate bond returns and investment growth are roughly flat across the B/M portfolios. Not

surprisingly, sorting on CI produces a large spread in Iit/Kit of 7.3%. This characteristic increases

monotonically from 9% for the low to 16% for the high CI portfolio. Compared to the high CI

firms, the low CI firms also have much higher future investment growth (1.25 versus 0.81) and

higher market leverage (35% versus 28%). All three patterns go in the right direction to match

average stock returns. The remaining characteristics are largely flat across the CI portfolios.

The observed patterns in characteristics help explain the differences in the estimates of the

adjustment cost parameter, a, across the different sets of portfolios. For the B/M portfolios, for

example, the characteristic Yit+1/Kit+1 goes strongly in the wrong direction to match average stock

returns. Equation (3) suggests that this backward cross-sectional movement in the numerator of

the investment return must be countered with a relatively strong movement in the denominator if

average levered investment returns are to match average stock returns. A high estimate of a, 22.3,

accomplishes this goal by magnifying the movement in the denominator. For the CI portfolios both

future investment growth and Iit/Kit go strongly in the right direction. As such, the magnifying

effect of a, 0.97, does not need to be large. The cross-sectional movement in Iit/Kit for the SUE port-

folios is negligible, meaning that the parameter a only operates via its effect on future investment

growth. The estimate of 7.68 falls between the extreme estimates for the other testing portfolios.

16



To quantify the role of each driver in matching expected stock returns, we conduct the following

accounting exercises. We start with the parameters reported in Panel A of Table 2. We set a given

driver equal to its cross-sectional average in each year. We then use the estimated parameters to

reconstruct levered investment returns, while keeping all the other characteristics unchanged. In

the case of future investment growth we hold constant the capital gain component of the investment

return, [1 + (1 − τ t+1)a (Iit+1/Kit+1)]/ [1 + (1 − τ t)a (Iit/Kit)] = qit+1/qit, while allowing all other

components to vary. We focus on the resulting change in the magnitude of the mean errors: a large

change would suggest that the driver in question is quantitatively important.

Panel B of Table 4 reports several insights. First, the most important driver for the SUE

portfolio returns is qit+1/qit: eliminating its cross-sectional variation makes the q-theory model

underpredict the average stock return of the high-minus-low SUE portfolio by a mean error of 8.85%

per annum. In contrast, this error is only −0.40% in Table 3. Yit+1/Kit+1 also is important: without

its cross-sectional variation, the mean error of the high-minus-low SUE portfolio becomes 4.31%.

Second, investment and leverage are both important for the B/M portfolios. Fixing Iit/Kit to

its cross-sectional average produces a mean error of 90.23% per annum for the high-minus-low B/M

portfolio. This huge error mostly reflects the large estimate of the parameter a for this set of testing

portfolios. Setting wit to its cross-sectional average produces a mean error of 11.58% for the high-

minus-low B/M portfolio. Yit+1/Kit+1 and qit+1/qit also play a role, but they are quantitatively

less important than wit. Third, the dominating force in driving the average stock returns across

the CI portfolios is Iit/Kit. Eliminating its cross-sectional variation gives rise to a mean error of

−8.53% per annum for the high-minus-low CI portfolio. Fixing qit+1/qit produces a substantial

mean error of 4.60%, and wit contributes 2.71% per annum. The effect of Yit+1/Kit+1 is negligible.

4.3 The q-theory Model: Matching Both Expected Returns and Variances

4.3.1 Point Estimates and Overall Model Performance

Panel B of Table 2 reports the point estimates and overall model performance when we use the

q-theory model to match both the expected returns and variances of the testing portfolios. Capi-

tal’s share, α, is estimated from 0.35 to 0.61, and all estimates are significant. The estimates of the

adjustment cost parameter, a, are on average higher than those reported in Panel A. The estimates

are 11.48 and 16.23 for the B/M and CI portfolios, and both are significant. The estimate of a for

the SUE portfolios is 28.88, but with a large standard error of 16.25.
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As explained in Erickson and Whited (2000), it can be misleading to interpret the parameter

a in terms of adjustment costs or speeds. We therefore follow their suggestion of gauging the eco-

nomic magnitude of this parameter in terms of the elasticity of investment with respect to marginal

q. Evaluated at the sample mean, this elasticity is given by 1/a times the ratio of the mean of

qit to the mean of Iit/Kit. The estimates in Panel B imply elasticities that range from 0.35 to

0.65. A similar inelastic response of 0.11 is implied by the estimate of a for the B/M portfolios in

Panel A. However, the implied elasticity for the SUE portfolios is greater than one, and that for

the CI portfolios is over ten. Although this last estimate seems unreasonable, the others fall in a

reasonable range between zero and 1.3, and the general inference given by these estimates is that

investment responds to q inelastically.

Panel B of Table 2 reports three tests of overall model performance. χ2
(2) is the χ2 test that all

the variance errors are jointly zero, χ2
(1) is the χ2 test that all the mean errors are jointly zero, and

the statistic labeled χ2 tests that all the mean and variance errors are jointly zero. The χ2
(2) tests do

not reject the model. More important, the average variance errors, denoted a.a.p.e.(2), are relatively

small. To better interpret their economic magnitude, we use the parameter estimates from Panel

B of Table 2 to calculate the average levered investment return volatility (instead of variance). At

20.43%, this average predicted volatility is close to the average realized volatility, 21.06%, across the

ten SUE portfolios. For the ten B/M portfolios, the average stock return volatility is 24.99%, and the

average levered investment return volatility is 23.55%. Finally, for the ten CI portfolios the average

stock return volatility is 24.84%, and their average levered investment return volatility is 24.35%.

These volatility results complement Cochrane’s (1991) in several ways. First, we account for

leverage, while Cochrane does not. Second, we use portfolios as testing assets, in which firm-specific

shocks are unlikely to be completely diversified away, while Cochrane studies the stock market

portfolio. Third, and most important, we formally choose parameters to match volatilities, while

Cochrane calibrates his parameters to match means exactly but allows volatilities to vary freely.

Although the χ2
(1) tests on the mean errors do not reject the model, the magnitudes of the mean

errors, denoted a.a.p.e.(1), are relatively large. The a.a.p.e.(1) for the SUE portfolios is 3.45% per

annum, up from 0.74% when matching expected returns only. The a.a.p.e.(1) for the B/M portfolios

increases slightly from 2.32% to 2.58%, while that for the CI portfolios goes up from 1.51% to 2.22%.

This increase is to be expected because we are asking more of the model by matching more moments.
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4.3.2 Euler Equation Errors

Panel B of Table 3 reports individual variance errors, defined as in equation (9), and mean errors,

defined as in equation (8), in which levered investment returns, rIw
it+1, are constructed using the

estimates from Panel B of Table 2. The t-statistics of the errors, described in Appendix B, are

calculated using the variance-covariance matrix from one-stage GMM.

Panel B of Table 3 shows that the magnitude of the variance errors is generally small relative to

stock return variances. Most variance errors are insignificant. The left panels in Figure 5 plot lev-

ered investment return volatilities against stock return volatilities for the testing portfolios. To facil-

itate interpretation, we plot volatilities instead of variances. The points in the scatter plot are gen-

erally aligned with the 45-degree line. However, while there is no discernible relation between stock

return volatilities and the characteristics in the data, the model predicts a negative relation between

levered investment return volatilities and SUE (Panel A) and a positive relation between the pre-

dicted volatilities and B/M (Panel C). Panel B of Table 3 also shows that the variance errors increase

with SUE and decrease with B/M. The difference in the variance errors is 0.08 (t = 1.83) between

the high and low SUE portfolios and is −0.20 (t = −2.39) between the high and low B/M portfolios.

Panel B of Table 3 shows that the mean error varies systematically with SUE: it increases from

−6.99% per annum for the low SUE portfolio to 5.38% for the high SUE portfolio. The difference of

12.37% (t = 2.51) is similar in magnitude to those from the traditional models. Panel B of Figure

5 plots the average levered investment returns against the average stock returns. The pattern is

largely horizontal, similar to those from the traditional models.

The mean errors for the B/M portfolios in Panel B also are larger than those in Panel A from

matching only expected returns. However, the model still predicts an average return spread of

11.26% per annum between the extreme B/M portfolios. The mean error for the high-minus-low

B/M portfolio is 5.89% per annum in the q-theory model, which is lower than 7.30% from the Fama-

French model. (The CAPM and the standard consumption CAPM produce even higher mean errors,

18.56% and 12.31%, respectively.) The model’s performance in reproducing the average returns of

the CI portfolios deteriorates to the same level as in the traditional models. The mean error differ-

ence between the high and low CI portfolios is −6.60%, which is similar to those from the CAPM

and the Fama-French model. From Panel F of Figure 5, the scatter plots of average returns from the

q-theory model are largely horizontal, similar to the patterns in Figure 4 for the traditional models.
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4.3.3 A Correlation Puzzle

As noted, equation (5), taken literally, predicts that stock returns should equal levered investment

returns at every data point. We have so far examined the first and second moments of returns that

are the focus of much work in financial economics. We can explore yet another (even stronger) pre-

diction of the model: stock returns should be perfectly correlated with levered investment returns.

Table 5 reports that the contemporaneous time series correlations between stock and levered

investment returns are weakly negative, while those between one-period-lagged stock returns and

levered investment returns are positive. When we pool all the observations in the SUE portfolios to-

gether, the contemporaneous correlation is −0.11, which is significant at the 5% level. However, the

correlation between one-period-lagged stock returns and levered investment returns is 0.19, which

is significant at the 1% level. Replacing levered investment returns with investment growth yields

similar results, meaning that the correlations are insensitive to the investment return specifications.

Lamont (2000) shows that investment lags (lags between the decision to invest and the actual

investment expenditure) can temporally shift the correlations between investment growth and stock

returns. Lags prevent firms from adjusting investment immediately in response to discount rate

changes. Consider a one-year lag. A discount rate fall in year t increases investment only in year

t+1. When stock returns rise in year t (due to the discount rate fall), investment growth rises in year

t+1: lagged stock returns should be positively correlated with investment growth. The discount

rate fall in year t also means low average stock returns in year t+1, coinciding with high investment

growth in year t+1. As such, the contemporaneous correlation between stock returns and investment

growth should be negative. These lead-lag correlations are consistent with the evidence in Table 5.

However, incorporating investment lags into the model is beyond our scope. After all, these lags

appear less important for the first and potentially even the second moments of stock returns that

we focus on. Incorporating lags will likely only improve the fit along these two crucial dimensions.

5 Summary and Future Work

We use GMM to estimate a structural model of cross-sectional stock returns derived from the q-

theory of investment. We construct empirical first and second moment conditions based on the

q-theory prediction that stock returns equal levered investment returns, the latter of which can be

constructed from firm characteristics. Our parsimonious model (with only two parameters) goes

a long way toward capturing the average returns of stock portfolios sorted by earnings surprises,
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book-to-market equity, and capital investment. The volatilities from the model also are empirically

plausible. However, the model falls short in matching expected returns and volatilities simultane-

ously and in reproducing the correlation structure between stock returns and investment growth. In

sum, we interpret our results as saying that on average portfolios of firms do a good job of aligning

investment policies with their costs of capital, and that this alignment drives many stylized facts in

cross-sectional stock returns. In particular, because we avoid the parametrization of the stochastic

discount factor, our work is silent about why average return spreads across characteristics-sorted

portfolios are not matched with spreads in covariances.

We view our contribution as mainly providing a simple structure that links the cross section

of returns to characteristics in an economically interpretable way. To preserve the transparency of

the economic mechanisms that drive our results, we have not searched deliberately for alternative

specifications to maximize the model fit. This simplicity leaves open many paths for future work.

One can introduce capital heterogeneity, labor adjustment costs, costly reversibility, flow fixed

costs of production (or investment), financing constraints, investment-specific technological shocks,

and non-quadratic adjustment costs, while preserving the closed-form Euler equation tests. De-

creasing returns to scale, investment lags, and pure fixed costs can be incorporated as well. However,

the analytical link between stock and investment returns breaks, and the resulting models can only

be estimated via simulation-based methods. The asset pricing literature on corporate bonds has

traditionally built on the contingent-claims framework with exogenous investment and cash flows.

Taking stock returns as given, one can turn equation (4) around as a theory for bond returns. A dy-

namic trade-off theory of optimal leverage can be embedded into the q-theory framework to provide

a more complete description of the relations between leverage and expected stock and bond returns.
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A Proof of Proposition 1

Let qit be the Lagrangian multiplier associated with Kit+1 = Iit + (1 − δit)Kit, and qit is therefore

the expected present value of the marginal benefits of an additional unit of capital. The optimality

conditions with respect to Iit,Kit+1, and Bit+1 from maximizing equation (2) are, respectively,

qit = 1 + (1 − τ t)
∂Φ(Iit,Kit)

∂Iit
(A1)

qit = Et

[

Mt+1

[

(1 − τ t+1)

[

∂Π(Kit+1,Xit+1)

∂Kit+1
−

∂Φ(Iit+1,Kit+1)

∂Kit+1

]

+ τ t+1δit+1 + (1 − δit+1)qit+1

]]

(A2)

1 = Et

[

Mt+1

[

rB
it+1 − (rB

it+1 − 1)τ t+1

]]

. (A3)

Equation (A1) equates the marginal purchase and adjustment costs of investing to the marginal

benefit, qit (marginal q). Equation (A2) is the investment Euler condition, which describes the evo-

lution of qit. The term (1 − τ t+1)∂Π(Kit+1,Xit+1)/∂Kit+1 captures the marginal after-tax profit

generated by an additional unit of capital at t + 1, the term −(1 − τ t+1) ∂Φ(Iit+1,Kit+1)/∂Kit+1

captures the marginal after-tax reduction in adjustment costs, the term τ t+1δit+1 is the marginal

depreciation tax shield, and the term (1− δit+1)qit+1 is the marginal continuation value of an extra

unit of capital net of depreciation. Discounting these marginal profits of investment dated t + 1

back to t using the stochastic discount factor yields qit.

Dividing both sides of equation (A2) by qit and substituting equation (A1), we obtain

Et[Mt+1r
I
it+1] = 1, in which rI

it+1 is the investment return, defined as:

rI
it+1 ≡

(1 − τ t+1)
[

∂Π(Kit+1,Xit+1)
∂Kit+1

−
∂Φ(Iit+1,Kit+1)

∂Kit+1

]

+ τ t+1δit+1 + (1 − δit+1)
[

1 + (1 − τ t+1)
∂Φ(iit+1,Kit+1)

∂Iit+1

]

1 + (1 − τ t)
∂Φ(Iit,Kit)

∂Iit

.

(A4)

The investment return is the ratio of the marginal benefit of investment at time t + 1 divided by

the marginal cost of investment at t. Substituting ∂Π(Kit+1,Xit+1)/∂Kit+1 = αYit+1/Kit+1 and

Φ(Iit,Kit) = (a/2)(Iit/Kit)
2Kit into equation (A4) yields the investment return equation (3).

Equation (A3) says that Et[Mt+1r
B
it+1] = 1+Et[Mt+1(r

B
it+1−1)τ t+1]. Intuitively, because of the

tax benefit of debt, the unit price of the pre-tax bond return, Et[Mt+1r
B
it+1], is higher than unity.

The difference is precisely the present value of the tax benefit. Because we define the after-tax

corporate bond return, rBa
it+1 ≡ rB

it+1 − (rB
it+1 − 1)τ t+1, equation (A3) says that the unit price of the

after-tax corporate bond return is one: Et[Mt+1r
Ba
it+1] = 1.

To prove equation (4), we first show that qitKit+1 = Pit +Bit+1 under constant returns to scale.

24



We start with Pit + Dit = Vit and expand Vit using equations (1) and (2):

Pit + (1 − τ t)[Π(Kit,Xit) − Φ(Iit,Kit) − rB
it Bit] − τ tBit − Iit + Bit+1 + τ tδitKit =

(1 − τ t)

[

Π(Kit,Xit) −
∂Φ(Iit,Kit)

∂Iit
Iit −

∂Φ(Iit,Kit)

∂Kit
Kit − rB

it Bit

]

− τ tBit − Iit + Bit+1 + τ tδitKit

− qit(Kit+1 − (1 − δit)Kit − Iit) + Et[Mt+1((1 − τ t)

[

Π(Kit+1,Xit+1) −
∂Φ(Iit+1,Kit+1)

∂Iit+1
Iit+1

−

∂Φ(Iit+1,Kit+1)

∂Kit+1
Kit+1 − rB

it+1Bit+1

]

− τ t+1Bit+1 − Iit+1 + Bit+2

+ τ t+1δit+1Kit+1 − qit+1(Kit+2 − (1 − δit+1)Kit+1 − Iit+1) + . . . )] (A5)

Recursively substituting equations (A1), (A2), and (A3), and simplifying, we obtain:

Pit + (1 − τ t)[Π(Kit,Xit) − Φ(Iit,Kit) − rB
it Bit] − τ tBit − Iit + Bit+1 + τ tδitKit =

(1 − τ t)

[

Π(Kit,Xit) −
∂Φ(Iit,Kit)

∂Kit
Kit − rB

it Bit

]

− τ tBit + qit(1 − δit)Kit + τ tδitKit (A6)

Simplifying further and using the linear homogeneity of Φ(Iit,Kit) yield:

Pit + Bit+1 = (1 − τ t)
∂Φ(Iit,Kit)

∂Iit
Iit + Iit + qit(1 − δit)Kit = qitKit+1 (A7)

Finally, we are ready to prove equation (4):

witr
Ba
it+1 + (1 − wit)r

S
it+1 =







(1 − τ t+1)r
B
it+1Bit+1 + τ t+1Bit+1 + Pit+1

+(1 − τ t+1)[Π(Kit+1,Xit+1) − Φ(Iit+1,Kit+1) − rB
it+1Bit+1]

−τ t+1Bit+1 − Iit+1 + Bit+2 + τ t+1δit+1Kit+1







Pit + Bit+1

=
1

qitKit+1

[

qit+1(Iit+1 + (1 − δit+1)Kit+1) + (1 − τ t+1)[Π(Kit+1,Xit+1)

−Φ(Iit+1,Kit+1)] − Iit+1 + τ t+1δit+1Kit+1

]

=
qit+1(1 − δit+1) + (1 − τ t+1)

[

∂Π(Kit+1,Xit+1)
∂Kit+1

−
∂Φ(Iit+1,Kit+1)

∂Kit+1

]

+ τ t+1δit+1

qit
= rI

it+1. (A8)

B Estimation Details

Following the standard GMM procedure (e.g., Hansen and Singleton (1982)), we estimate the pa-

rameters, b ≡ (a, α), to minimize a weighted combination of the sample moments (8) or (8) and

(9). Specifically, let gT be the sample moments. The GMM objective function is a weighted sum

of squares of the model errors across assets, g′
TWgT , in which we use W = I, the identity matrix.

Let D = ∂gT /∂b and S a consistent estimate of the variance-covariance matrix of the sample errors

gT . We estimate S using a standard Bartlett kernel with a window length of five.
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The estimate of b, denoted b̂, is asymptotically normal with variance-covariance matrix:

var(b̂) =
1

T
(D′WD)−1D′WSWD(D′WD)−1 (B1)

To construct standard errors for the model errors on individual portfolios or groups of model errors,

we use the variance-covariance matrix for the model errors, gT :

var(gT ) =
1

T

[

I− D(D′WD)−1D′W
]

S
[

I − D(D′WD)−1D′W
]′

(B2)

In particular, the χ2 test whether all model errors are jointly zero is given by:

g′
T [var(gT )]+ gT ∼ χ2(# moments − # parameters) (B3)

The superscript + denotes pseudo-inversion.
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Table 1 : Descriptive Statistics of Testing Portfolio Returns

For testing portfolio i, we report in annualized percent the average stock return, r̄S
i , the stock return volatility, σS

i , the intercept from the CAPM regression, ei,

the intercept from the Fama-French three-factor regression, eF F
i , and the model error from the standard consumption CAPM, eC

i . In each panel we only report

results for three (Low, 5, and High) out of ten portfolios to save space. The H−L portfolio is long in the high portfolio and short in the low portfolio. The

heteroscedasticity-and-autocorrelation-consistent t-statistics for the model errors are reported in brackets beneath the corresponding errors. a.a.p.e. is the average

of the absolute values of the errors for a given set of ten testing portfolios. For the CAPM and the Fama-French model, the p-values in brackets in the last column

are for the Gibbons, Ross, and Shanken (1989) tests of the null hypothesis that the intercepts for a given set of ten portfolios are jointly zero. For the standard

consumption CAPM the p-values are for the χ2 test from one-stage GMM that the moment restrictions for all ten portfolios are jointly zero. In Panel A for the

standard consumption CAPM the estimate of the time preference coefficient is β = 2.76 with a standard error (ste) of 1.05 and the estimate of risk aversion is

γ = 127.59 (ste = 59.07). In Panel B β = 3.31 (ste = 1.38) and γ = 142.08 (ste = 63.73). In Panel C β = 3.30 (ste = 1.39) and γ = 143.28 (ste = 62.71).

Low 5 High H−L a.a.p.e. [p] Low 5 High H−L a.a.p.e. [p] Low 5 High H−L a.a.p.e. [p]

Panel A: Ten SUE portfolios Panel B: Ten B/M portfolios Panel C: Ten CI portfolios

r̄S
i 10.89 18.95 23.39 12.50 8.65 17.93 25.78 17.13 22.12 18.10 15.16 −6.96

σS
i 22.35 22.51 21.13 8.46 27.93 24.92 26.97 20.54 32.42 22.26 26.73 11.37

ei −1.69 6.56 10.86 12.55 5.67 [0.00] −4.91 5.19 13.65 18.56 6.34 [0.00] 8.21 5.89 1.91 −6.30 5.71 [0.01]
[t] [−0.84] [2.83] [5.74] [5.53] [−2.11] [2.59] [4.66] [2.51] [2.91] [3.10] [0.87] [−3.88]

eF F
i −4.59 1.96 9.47 14.06 4.01 [0.00] −0.54 1.80 6.76 7.30 2.79 [0.00] 6.45 1.54 0.11 −6.34 2.24 [0.01]

[t] [−2.27] [0.89] [5.20] [5.31] [−0.24] [1.08] [3.10] [3.25] [2.81] [1.12] [0.06] [−3.99]

eC
i −8.07 −0.04 5.31 13.38 3.62 [0.00] −5.43 0.27 6.88 12.31 2.36 [0.00] 4.03 0.46 −4.35 −8.38 2.36 [0.00]

[t] [−1.19] [0.01] [1.36] [1.35] [−0.66] [0.06] [1.96] [0.26] [0.75] [0.11] [−0.71] [−1.35]
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Table 2 : Parameter Estimates and Tests of Overidentification

Estimates and tests are from one-stage GMM estimation with the identity weighting matrix. In Panel A the

moment conditions are E
[

rS
it+1 − rIw

it+1

]

= 0. a is the adjustment cost parameter and α is capital’s share. Their

standard errors, denoted ste, are reported in brackets beneath the estimates. χ2 is the statistic from one-stage

GMM that the moment conditions are jointly zero. d.f. is the degrees of freedom, and p is the p-value associated

with the test. a.a.p.e. is the average absolute value of the model errors, ET

[

rS
it+1 − rIw

it+1

]

, in which ET [·] is the

sample mean of the series in brackets, in annual percent across a given set of testing portfolios. In Panel B

the moment conditions are E
[

rS
it+1 − rIw

it+1

]

= 0 and E
[

(

rS
it+1 − E

[

rS
it+1

])2
−

(

rIw
it+1 − E

[

rIw
it+1

])2
]

= 0. χ2
(2),

d.f.(2), and p(2) are the statistic, degrees of freedom, and p-value for the χ2 test that the variance errors, defined

as ET

[

(

rS
it+1 − ET

[

rS
it+1

])2
−

(

rIw
it+1 − ET

[

rIw
it+1

])2
]

, are jointly zero. a.a.p.e.(2) is the average magnitude of the

variance errors in annual decimals. χ2
(1), d.f.(1), and p(1) are the statistic, degrees of freedom, and p-value for the χ2

test that the mean errors, defined in the same way as in Panel A, are jointly zero. a.a.p.e.(1) is the average magnitude

of the mean errors in annual percent. χ2, d.f., and p are the statistic, degrees of freedom, and p-value of the test that

both the mean and variance errors are jointly zero.

Panel A: Panel B:
Matching expected returns Matching expected returns and variances

SUE B/M CI SUE B/M CI

a 7.68 22.34 0.97 a 28.88 11.48 16.23
[ste] [1.72] [25.47] [0.29] [ste] [16.25] [4.75] [5.53]
α 0.32 0.50 0.21 α 0.61 0.35 0.36
[ste] [0.03] [0.31] [0.02] [ste] [0.27] [0.07] [0.08]

χ2 4.37 5.99 6.52 χ2
(2) 5.14 6.18 6.05

d.f. 8 8 8 d.f.(2) 8 8 8
p 0.82 0.65 0.59 p(2) 0.74 0.63 0.64
a.a.p.e. 0.74 2.32 1.51 a.a.p.e.(2) 0.03 0.04 0.02

χ2
(1) 5.22 4.38 4.81

d.f.(1) 8 8 8
p(1) 0.73 0.82 0.78
a.a.p.e.(1) 3.45 2.58 2.22

χ2 5.45 6.17 6.62
d.f. 18 18 18
p 1.00 1.00 0.99
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Table 3 : Euler Equation Errors

Euler equation errors and t-statistics are from one-stage GMM estimation with an identity weighting matrix. In Panel A the moment conditions are

E
[

rS
it+1 − rIw

it+1

]

= 0. The mean errors are defined as eq

i ≡ ET

[

rS
it+1 − rIw

it+1

]

, in which ET [·] is the sample mean of the series in brackets. In Panel

B the moment conditions are E
[

rS
it+1 − rIw

it+1

]

= 0 and E
[

(

rS
it+1 − E

[

rS
it+1

])2
−

(

rIw
it+1 − E

[

rIw
it+1

])2
]

= 0. The variance errors are defined as eσ2

i ≡

ET

[

(

rS
it+1 − ET

[

rS
it+1

])2
−

(

rIw
it+1 − ET

[

rIw
it+1

])2
]

. The mean errors are defined as in Panel A. In the last column we report the difference in the mean errors and

the difference in the variance errors between the high and low portfolios, as well as their t-statistics. Mean errors are in annual percent, and variance errors are

in annual decimals. In each set of ten portfolios, we only report results for three (Low, 5, and High) out of the ten portfolios to save space.

Low 5 High H−L Low 5 High H−L Low 5 High H−L

Panel A: Euler equation errors from matching expected returns

Ten SUE portfolios Ten B/M portfolios Ten CI portfolios

eq

i 0.26 1.66 −0.15 −0.40 −3.94 2.35 −2.73 1.21 −0.97 2.72 −1.45 −0.49
[t] [0.61] [1.70] [−0.14] [−0.41] [−1.76] [1.37] [−1.37] [0.79] [−0.51] [1.74] [−1.24] [−0.41]

Panel B: Euler equation errors from matching expected returns and variances

Ten SUE portfolios Ten B/M portfolios Ten CI portfolios

eσ2

i −0.04 0.02 0.03 0.08 0.10 0.01 −0.10 −0.20 0.01 0.03 −0.06 −0.07
[t] [−1.93] [0.95] [1.47] [1.83] [2.35] [0.50] [−1.99] [−2.39] [0.34] [1.33] [−1.77] [−1.36]

eq

i −6.99 2.60 5.38 12.37 −6.46 1.71 −0.58 5.89 1.29 3.47 −5.32 −6.60
[t] [−2.24] [1.91] [2.01] [2.51] [−1.89] [0.94] [−0.15] [1.08] [0.49] [1.97] [−1.97] [−2.04]
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Table 4 : Expected Returns Accounting

Panel A reports the averages of investment-to-capital, Iit/Kit, future investment growth, (Iit+1/Kit+1)/(Iit/Kit), sales-to-capital, Yit+1/Kit+1, the depreciation

rate, δit+1, market leverage, wit, and corporate bond returns in annual percent, rB
it+1. In each set of ten portfolios we only report results for three (Low, 5, and

High) out of the ten portfolios to save space. The column H−L reports the average differences between high and low portfolios and the column [tH−L] reports the

heteroscedasticity-and-autocorrelation-consistent t-statistics for the test that the differences equal zero. Panel B performs four comparative static experiments

denoted Iit/Kit, qit+1/qit, Yit+1/Kit+1, and wit, in which qit+1/qit =[1+(1−τ t+1)a(Iit+1/Kit+1)]/[1+(1−τ t)a(Iit/Kit)]. In the experiment denoted Yit+1/Kit+1,

we set Yit+1/Kit+1 for a given set of ten portfolios, indexed by i, to be its cross-sectional average in t+1. We then use the parameters reported in Panel A of Table

2 to reconstruct the levered investment returns, while keeping all the other characteristics unchanged. The other three experiments are designed analogously. We

report the mean errors defined as eq
i ≡ ET

[

rS
it+1 − rIw

it+1

]

for the testing portfolios, the high-minus-low portfolios, and the average absolute value of eq
i (a.a.p.e.)

across a given set of ten testing portfolios.

Panel A: Characteristics in levered investment returns

Low 5 High H−L [tH−L] Low 5 High H−L [tH−L] Low 5 High H−L [tH−L]

Ten SUE portfolios Ten B/M portfolios Ten CI portfolios

Iit/Kit 0.12 0.11 0.12 0.00 [0.70] 0.18 0.11 0.08 −0.10 [−7.95] 0.09 0.11 0.16 0.07 [11.06]
(Iit+1/Kit+1)/(Iit/Kit) 0.89 1.00 1.06 0.17 [4.06] 0.98 1.00 1.02 0.04 [0.68] 1.25 1.04 0.81 −0.44 [−7.23]
Yit+1/Kit+1 1.52 1.50 1.83 0.31 [5.16] 1.95 1.45 1.38 −0.57 [−6.77] 1.84 1.58 1.89 0.05 [0.38]
δit+1 0.08 0.08 0.08 0.00 [0.63] 0.10 0.07 0.07 −0.03 [−5.01] 0.08 0.07 0.08 0.00 [−0.46]
wit 0.30 0.28 0.21 −0.10 [−5.83] 0.08 0.27 0.53 0.44 [12.44] 0.35 0.25 0.28 −0.07 [−2.59]

rB
it+1 9.44 9.76 9.38 −0.06 [−0.27] 8.17 8.09 8.52 0.35 [1.05] 8.47 8.27 8.44 −0.03 [−0.15]

Panel B: Mean errors from comparative static experiments

Low 5 High H−L a.a.p.e. Low 5 High H−L a.a.p.e. Low 5 High H−L a.a.p.e.

Ten SUE portfolios Ten B/M portfolios Ten CI portfolios

Iit/Kit −2.48 4.45 −4.26 −1.78 2.35 −42.06 4.69 48.17 90.23 21.25 2.86 3.50 −5.67 −8.53 2.26

qit+1/qit −5.23 1.76 3.62 8.85 2.62 −1.92 2.11 −4.06 −2.14 1.87 0.73 2.97 −3.87 −4.60 1.71

Yit+1/Kit+1 −0.78 0.39 3.53 4.31 1.34 0.16 0.92 −6.33 −6.49 1.94 0.57 −0.44 0.09 −0.48 0.40
wit 0.13 1.89 −1.46 −1.58 0.88 −6.00 2.19 5.58 11.58 3.57 1.80 2.61 −0.91 −2.71 1.35
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Table 5 : Correlations

We report time series correlations of stock returns (contemporaneous, rS
it+1, and one-period-lagged, rS

it) with levered investment returns, rIw
it+1, and with investment

growth, Iit+1/Iit. In each panel we only report results for three (Low, 5, and High) out of ten portfolios to save space. ρ(·, ·) denotes the correlation between the

two series in the parentheses. We report the significance of a given correlation with a star system: 10%, 5%, and 1% significance levels are indicated by one, two,

and three stars, respectively. In the last column, All, we report the correlations and their significance by pooling all the observations for a given set of ten testing

portfolios (SUE, B/M, or CI). The levered investment returns are constructed using the parameters in Panel A of Table 2.

Low 5 High All Low 5 High All Low 5 High All

Panel A: Ten SUE portfolios Panel B: Ten B/M portfolios Panel C: Ten CI portfolios

ρ
(

rS
it+1, r

Iw
it+1

)

−0.28 −0.21 −0.26 −0.11⋆⋆
−0.23 −0.17 −0.05 −0.12⋆⋆ 0.22 −0.34⋆⋆

−0.30⋆
−0.06

ρ
(

rS
it, r

Iw
it+1

)

0.22 0.01 0.14 0.19⋆⋆⋆ 0.06 0.23 0.33⋆⋆⋆ 0.22⋆⋆⋆ 0.44⋆⋆⋆ 0.16 0.30⋆ 0.21⋆⋆⋆
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Figure 2 : Average Predicted Stock Returns versus Average Realized Stock Returns, Ten
SUE Portfolios

Panel A: The q-theory model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption CAPM
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Figure 3 : Average Predicted Stock Returns versus Average Realized Stock Returns, Ten
B/M Portfolios

Panel A: The q-theory model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption CAPM
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Figure 4 : Average Predicted Stock Returns versus Average Realized Stock Returns, Ten CI
Portfolios

Panel A: The q-theory model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption CAPM
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Figure 5 : Predicted Stock Return Volatilities versus Realized Stock Return Volatilities,
Average Predicted Stock Returns versus Average Realized Stock Returns, The q-theory

Model, Matching Both Expected Returns and Variances

Panel A: Ten SUE portfolios, volatilities Panel B: Ten SUE portfolios, means
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Panel C: Ten B/M portfolios, volatilities Panel D: Ten B/M portfolios, means
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Panel E: Ten CI portfolios, volatilities Panel F: Ten CI portfolios, means
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