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Abstract

We propose a model of customer-supplier connectedness that has three definitive

features: Customer growth rate shocks influence the growth rates of their suppliers,

larger suppliers have more customers, and the strength of a customer-supplier link de-

pends on the size of the customer firm. This simple network structure reveals that the

distribution of firm sizes influences the diversification of all firms, thus the size distri-

bution and firm volatility distribution are intimately linked. When the size distribution

becomes more dispersed, economic activity is concentrated among a smaller number

of large firms, and the typical firm becomes less diversified. This effect is stronger

for small firms since they have fewer customers to diversify shocks to begin with. As

a result, firm-level volatility possesses an approximate factor structure in which the

concentration of the economy-wide firm size distribution serves as the factor. Em-

pirically, we document a range of new stylized facts consistent with the model. At

the macro level, we show that the firm size distribution and firm volatility distribution

evolve together. Economy-wide firm size concentration explains common movements in

firm-level volatility. We validate the importance of firm sizes in determining customer-

supplier networks using micro data on sales networks for public US firms, and we show

that the sales network structure is an important determinant of firm-level volatility.
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1 Introduction

In this paper we document a range of new empirical facts regarding firm size and firm volatil-

ity. At the macroeconomic level, the economy-wide firm size distribution and the cross sec-

tion distribution of firm-level growth rate volatilities evolve in unison. At the microeconomic

level, volatilities across firms covary strongly, and a firm’s volatility is closely associated with

the structure of its economic linkages with other firms. We develop a theoretical framework

in which shocks propagate through the economy via firm-level customer-supplier networks.

The model can explain the aggregate empirical relationships between the firm size distri-

bution and the volatility distribution. It ascribes the secular increase in U.S. firm-level

volatility to economy-wide increases in the concentration of customer networks. The model

also matches microeconomic facts regarding network structures and the behavior of volatility

at the firm-level.

Our network model of firm growth makes three definitive assumptions. First, customer

growth rate shocks influence the growth rates of their suppliers. When a customer suffers

an adverse productivity shock, it purchases less from its suppliers, and thus a portion of its

shock is transmitted upstream (as in Acemoglu et al. (2012)). Second, customer-supplier

connections are stochastic, and larger suppliers have a higher probability of being connected

with customers. Hence, large firms typically supply to a higher number of customers. Third,

the weight of a customer-supplier link depends on the size of the customer firm. A large cus-

tomer will have a stronger connection with its suppliers than do smaller customers because,

for example, it accounts for a large fraction of the supplier’s total sales. In the language

of networks, our customer-supplier model is a directed random graph in which a node’s ex-

pected out-degree depends on the size of the node, and in which connections are weighted

by the size of the receiver node.

These simple assumptions have a rich set of macroeconomic and microeconomic impli-

cations for growth rate volatility. First, larger firms have lower volatility because they are

connected to more customers. Firms are aggregators of downstream shocks to the other
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firms in their customer network, thus a broader customer base improves diversification.

Second, firms with more concentrated customer networks have higher volatility. In the

model, sizes of customers determine the strength of connections. Therefore, a supplier’s

network will be more concentrated if there is high dispersion in its customers’ sizes. When a

supplier has some customers that are much larger than others, the large customers’ shocks

will exert an outsized influence on the supplier. A supplier with a very concentrated customer

base will be poorly diversified and have high volatility even if it has a large number of

customers. Gabaix (2011) argues that there is a “granularity” effect at the economy-level –

a small number of large firms drive aggregate volatility since aggregation implies that shocks

are size-weighted. Our model embeds the firm-level analogue of granularity – a small number

of large customers drive most of the variation of individual firms. As a given supplier’s

customer size distribution becomes more concentrated, the standard 1/
√
N diversification

of shocks becomes impaired, and the supplier’s volatility increases as a result.

This framework predicts a close association between the cross section distributions of size

and volatility. The size distribution at any point in time determines the network structure.

Given firm sizes, the probability distribution of connections for all nodes in the network

is pinned down, as are the weights of directed links between nodes (conditional on a link

existing). The network structure, in turn, determines the volatility distribution. Our model’s

random graph structure means that each supplier’s network is a random draw from the entire

size distribution and therefore inherits the concentration of the entire size distribution (in

expectation). Larger suppliers have a higher probability of establishing any given connection,

thus their customer base is a larger sample from the overall size distribution. Because they

have more connections, larger firms have lower volatility. But because both large firms and

small firms draw from the same economy-wide size distribution, their customer networks

have equal concentration, in expectation. Cross section differences in volatility are therefore

mostly driven by their differences in size, rather than differences in customer concentration.

This statement is only approximately true because the model is finite; by chance alone, some
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firms will draw customer bases that are especially concentrated or especially homogeneous.

This description of how size and volatility distributions are linked is true even in a static

framework, such as that of Acemoglu et al. (2012). Our model is dynamic, since we are inter-

ested in studying how distributions co-evolve over time. First, our model produces aggregate

dynamics in the size distribution. This is because the network introduces growth rate and

volatility interdependence among firms that breaks Gibrat’s law – growth innovations are no

longer i.i.d. This produces a steady state size distribution that is time-varying rather than

constant.

Variation in the size distribution, combined with the determination of volatilities within

the network mechanism, induces endogenous joint variation in the size and volatility distribu-

tion. Because shocks are log normal, the distributions of size and volatility are approximately

log normal as well. This allow us to conveniently track the dynamics of each distribution

with only two processes: the cross section mean and standard deviation of the log quantities.1

When the size distribution widens, total economic activity is concentrated among a

smaller number of firms. This affects the diversifiability of shocks for all firms, but more so

for small firms who have few shocks to diversify in the first place. As a result, an approximate

factor structure in volatility arises in which the factor is the concentration of the entire size

distribution. Furthermore, this factor structure is true not only for firms’ total volatilities,

but is equally strong among idiosyncratic volatilities. In the literature, idiosyncratic volatil-

ity is constructed by first removing the correlated component of growth rates or returns with

a statistical factor model, then calculating the volatilities of the residuals (see, e.g., Bekaert,

Hodrick, and Zhang (2010)). In a sparse random network model, a standard factor regres-

sion is mis-specified. There is no dimension-reducing factor that can capture commonalities

1There is an extensive literature studying the firm size distribution that we do not cover here. We merely
note that our sample of firm sizes is approximately log normal. Hall (1987) characterized the literature on
US firm sizes saying “The size distribution of firms conforms fairly well to the log normal, with possibly
some skewness to the right.” Axtell (2001) provides evidence that firm sizes follow a power law in a large
sample including all private US firms. Cabral and Mata (2003) argue that firm sizes evolve toward a log
normal distribution over time. We discuss the association between public and private firm size distributions
in Appendix A.
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in growth rates since, by virtue of the network, every firm’s shock may be systematic. A

factor model will be mis-specified by definition, and a telltale sign of the mis-specification

will be residuals inheriting a volatility factor structure that looks very similar to the factor

structure for total volatility.

We document a range of new stylized facts, both macroeconomic and microeconomic,

that are consistent with the economic network model. Our macroeconomic facts link the

cross section firm size distribution with the cross section of firm volatility. When the firm

size distribution is highly dispersed, the mean and dispersion in firms’ volatilities are also

high. Size and volatility distributions are approximately log normal, thus we track their joint

dynamics by comparing their first two moments over time. An important validation of our

model is that firm size dispersion predicts average volatility and volatility dispersion, but

not the reverse. Firm volatility (both total and idiosyncratic) has a strong factor structure,

and concentration in the firm size distribution is a successful factor for describing common

variation in volatilities across firms. We show this both for firms’ quarterly sales growth

volatility and also for firms’ return volatility (which is measured far more accurately). We

find that time series dynamics in the firm size distribution can account for trends in average

firm-level volatility that have been studied by Campbell et al. (2001).

At the microeconomic level, we begin by documenting the importance of firm sizes (de-

fined as a firm’s total sales) for describing firm-level linkages in US customer-supplier net-

works. The customer-supplier data has three clear empirical features. First, larger suppliers

have a higher customer count. Second, for a given supplier, larger customers account for a

larger fraction of the supplier’s sales than do smaller customers. Third, shocks are trans-

mitted from customer to supplier, and not the reverse. These findings help validate our

network model assumptions. We then calibrate our network model to evaluate its ability to

match a range of moments in the customer-supplier linkage data. These moments include

correlations between a firm’s size, its growth rate volatility, its number of customers, and

the concentration of its customer base, as well as cross section quantiles of the size, volatility
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and out-degree distributions.

We analyze the determinants of firm-level volatility in light of the network model. We find

that firm size and, more tellingly, the concentration of firms’ customer networks, explains

substantial variation in volatility across firms and over time. Each of these possess stronger

explanatory power than the range of other volatility determinants that have been studied

in the literature, including industry concentration and competition, R&D intensity, equity

ownership composition, and firm age or cohort effects.

The customer-supplier relationship data that we use is from Compustat, and is subject

to two potential sources of bias. First, the data only include publicly traded firms. Second,

suppliers are only obligated to report material customer relationships, including any customer

that is responsible for more than 10% of the supplier’s sales. We take two steps to address

this empirical limitation. First, and most importantly, we simulate our model using the

full firm size distribution (including private firms), and then censor the simulated data in a

manner that matches the omission of small firms from Compustat data. Similarly, we censor

all simulated customer-supplier links whose weights fall below 10% of the supplier’s sales. By

calibrating a censored simulation against censored data, we are able to draw inferences about

network relationships among firms in the full, uncensored model economy. The second step

we take to address censoring issues is to show that the size and volatility dynamics uncovered

among public firms continues to hold when we pool public firm data with coarser data on

private firms available from the Census Bureau (see Appendix A).

1.1 Related Literature

The volatility of individual stock returns varies greatly over time (Lee and Engle (1993)) and

across different firms (Black (1976), Christie (1982), and Davis, Haltiwanger, Jarmin, and

Miranda (2007)). While much progress has been made in describing the time-series dynamics

of volatility, our understanding of the underlying determinants of stock return volatility is

limited. We usually think of exogenous variation in risk and uncertainty at the firm level
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as the driving forces of behind variation in aggregate volatility. For example, Gabaix (2011)

shows how the size distribution influences aggregate fluctuations holding firms’ volatilities

fixed. Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) study how aggregate shocks

are influenced by network structures. Both of these approaches view the economy as an

aggregator of firm-level or sector-level shocks. Foerster, Sarte, and Watson (2011) show

that sector-specific shocks play a larger role in accounting for aggregate industrial output

variations in the sample after 1984. We view firms themselves as aggregators of downstream

shocks to other firms in their customer network. We show how both the size distribution and

network structure interact to produce cross section heterogeneity and time series dynamics

in firms’ growth rate volatility. By studying firms as shock aggregators, our paper brings

volatility back inside the model.

Kelly, Lustig and Van Nieuwerburgh (2012) uncover a factor structure in the volatility of

stock returns from 1926-2010. Even after removing all of the common variation in returns,

the volatility of the residuals inherits the same factor structure as total volatility. The

volatility factor accounts for between 30% and 40% of the variation in firm-level volatility.

They also show that the same factor structure appears in the volatility of sales and earnings

growth. Similarly, Engle and Figlewski (2012) document a common factor in option-implied

volatilities since 1996, and Barigozzi, Brownlees, Gallo, and Veredas (2010) and Veredas and

Luciani (2012) examine the factor structure in realized volatilities of intra-daily returns since

2001. We provide an economic explanation for a common factor in firm-level volatility, and

argue that the cross-sectional dispersion of firm size is natural candidate for this volatility

factor.

Our paper also attempts to make sense of this enormous increase in the uncertainty faced

by U.S. firms. The volatility of stock returns has increased from an average of 26% per year

during the 1950’s to 63% per year since 1990 (see, for example, Campbell, Lettau, Malkiel,

and Xu (2001)). Since firm-level volatility of asset returns measures the uncertainty faced

by the managers of firms (Leahy and Whited (1996)), this represents a large increase in
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uncertainty. Uncertainty has a major impact on employment and investment (Bloom, Bond,

and Van Reenen (2007), Bloom (2009), Stokey (2012) ).

The divergence between firm-level and aggregate volatility measures has long puzzled

financial economists. Candidate explanations can be divided into two classes, real and finan-

cial. Our stylized facts about the joint distribution of volatility and firm size largely survive

even if we do not use market-based measures of volatility and/or size. This evidence largely

rules out financial explanations of these stylized facts.

Our empirical work is related to Cohen and Frazzini (2008), who document that news

about business partners does not immediately get reflected into prices. They use data on

the business network of firms gathered from their annual reports. We use their business

network data and we find that volatility is propagated upstream to suppliers as opposed to

downstream, to customers. Atalay, Hortaçsu, Roberts, and Syverson (2011) use the same

data to develop a realistic model of the buyer-supplier networks in the U.S. economy. We

will use their insights to develop our model.

The rest of the paper is structured as follows. Section 2 describes the network model.

Section 3 presents macroeconomic evidence of the association between the firm size dis-

tribution and the firm volatility distribution. Section 4 describes micro evidence for the

association between firms’ customer network structures and their volatility. Section 5 cali-

brates the model that to match key features of the macro evidence linking size and volatility

distributions, and the micro network evidence.

2 A Network Model of Firm Growth

We develop a dynamic network model of customer-supplier relations. In this directed net-

work, firms are exposed to their own idiosyncratic growth rate shocks, and also exposed

to growth rates of their customers. Shocks are propagated upstream through the network

and thus idiosyncratic shocks effectively become systematic. To match the cross-sectional
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evidence of customer-supplier relations, we introduce two size effects in our network model.

The first concerns the strength of the linkages: larger customers account for a larger share of

the supplier’s sales and hence have a larger impact on the supplier’s growth rate. The second

size effect concerns the number of links: larger suppliers are connected to more firms. This

model will match the relation between size, volatility, and customer network concentration

in the data.

2.1 Network Structure and Network Evolution

Define Si,t as the size of firm i, and its growth rate as gi,t+1, where Si,t+1 = Si,t exp(gi,t+1).

Firm i’s growth rate is defined as a linear combination of a firm-specific shock and a weighted

average of the growth rates of firms i’s customers:

gi,t+1 = µg + γ
N∑
j=1

wi,j,t gj,t+1 + εi,t+1. (1)

The parameter γ, which is assumed to be less than one in magnitude, governs the rate of

decay as a shock propagates through the network. The weight wi,j,t governs how strongly

firm i’s growth rate is influenced by the growth rate of firm j, and γ
∑N

j=1wi,j,t gj,t+1 is the

network’s aggregate impact on firm i. If i and j are not connected then wi,j,t = 0. Any firm

j that possesses a non-zero weight wi,j,t is interpreted as a customer of firm i. Each firm

i experiences an idiosyncratic growth rate shock εi,t+1 ∼ N(0, σε), and by convention the

weight on the firm’s own growth is always zero (wi,i,t = 0∀ t, i).

This is a directed network. Equation (1) says that shocks are propagated upstream, from

customer to supplier, rather than downstream. We provide evidence for this assumption in

the next section. Connections are not generally symmetric, thus firm j can be a customer

of i without i being a customer of j. Acemoglu et al. (2012) derive a static version of (1) as

the equilibrium outcome in a multi-sector production economy.

The strength of i and j’s customer-supplier relations depend on the size of customer j,
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and is defined as

wi,j,t =
bi,j,tSj,t∑N
k=1 bi,k,tSk,t

∀i, j, t. (2)

The existence of a link between i and j is captured by

bi,j,t =


1 if i connected to j at time t

0 otherwise,

and, conditional on a link existing (bi,j,t = 1), the strength of that link is simply a size

weight of customer j relative to the total size of all of i’s customers, Sj,t/
∑N

k=1 bi,k,tSk,t.

This weighting scheme assumes that larger customers have a larger impact on the supplier’s

growth rate. This assumption is the first size effect in our network, and we find strong

evidence for it in Compustat data. The full matrix of connection weights is W t = [wi,j,t].

The structure in (2) implies that all rows of W t sum to one. Its largest eigenvalue λmax is

one.

The model begins at time 0 with an exogenous initial firm size distribution {Si,0}Ni=1,

where each Si,0 is drawn from a log normal distribution with mean µS,0 and standard devia-

tion σS,0. The linkage structure at time 0 is determined by the initial firm size distribution.

Each element of the connections matrix, B0 = [bi,j,0], is drawn from a Bernoulli distribution

with P (bi,j,0 = 1) = pi,0 and

pi,0 = fi({Si,0}Ni=1). (3)

We consider a range of specifications for pi,0 in our calibration, the main specification being

pi,0 = Si,0/
(
Z
∑

j(Sj,0)
)

. According to this rule, the probability that supplier i and customer

j are connected depends on the size of the supplier, not the customer. Furthermore, larger

suppliers have more connections on average. This is the model’s second size effect.

Firm sizes evolve according to the growth rate process (1), and linkages evolve with the

size distribution over time. To induce stationarity in the model, we allow firms to die and

be replaced by new firms, as in Atalay, Hortaçsu, Roberts, and Syverson (2011), whose
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model matches important dynamic features of the actual buyer-supplier network in the U.S.

economy.

Each period t arrives with a new an N×1 vector of firm sizes St. All firms that fall below

a time-invariant minimum size threshold Smin at the start of t “die.” Additionally, a fraction

δ of firms die randomly. Each defunct firm is replaced by a new firm that is drawn from the

initial log normal firm size distribution (with parameters µS,0 and σS,0), but is truncated at

the maximum new firm size Smax.

The network of connections for surviving firms, governed by the N × N matrix Bt, is

redrawn on the basis of the prevailing size distribution. Connection probabilities each period

are based on the size of suppliers as in (3). To induce persistence in links, we modify this

rule, giving suppliers a relatively high probability of reconnecting to its customers from the

previous period. In particular, for t > 0 the probability of supplier i connecting to customer

j is

pi,t =


fi({Si,t}Ni=1) + κ∑N

j=1 bi,j,t−1
if i connected to j at t− 1

fi({Si,t}Ni=1)− κ∑N
j=1 bi,j,t−1

if i not connected to j at t− 1

(4)

where κ > 0. Equation (4) preserves the probability rule pi,t = fi({Si,t}Ni=1) unconditional of

past linkages.

These rules for the connection dynamics and firms’ birth and death completely specify

the network evolution and the growth rate process in (1).

2.2 Growth Fluctuations

In matrix notation, gt+1 is the N × 1 vector of growth rates and εt+1 the vector of shocks,

and (1) is

gt+1 = µg + γW tgt+1 + εt+1, where εt+1 ∼ N
(
0, σ2

εI
)
.
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As long as γ is smaller than one in magnitude,2 the matrix (I − γW t) is nonsingular and

gt+1 can be restated as

gt+1 = (I − γW t)
−1 (µg + εt+1

)
.

This variance-covariance matrix of gt+1 is therefore

V t

(
gt+1

)
= σ2

ε (I − γW t)
−1 (I − γW ′

t)
−1
. (5)

These growth dynamics generate dynamics to the relative size (or shares) of firms that are

similar to those explored by Menzly, Santos, and Veronesi (2004) and Santos and Veronesi

(2006) in a series of papers. However, there is no mean reversion built into our shares.

Furthermore, only the customer shares in W t are relevant for the cash flow dynamics of a

firm, not the firm size relative to the entire economy.

2.3 Network Effects on Volatility

2.3.1 Aggregate Growth Dynamics

The persistence parameter γ governs the strength of the network effect; when γ is close to

one, the shocks die out very slowly. When γ is zero, there are no network effects:

gt+1 = µg + εt+1, where εt+1 ∼ N
(
0, σ2

εI
)
.

This γ = 0 version of the model satisfies Gibrat’s law: the mean growth rate and the variance

of the growth rate are constant across firms, regardless of size, because the growth innovations

are i.i.d. over time. In this case, log size is normally distributed at time t, because it is given

by logSi,t = logSi,0 +
∑t

τ=1 log gi,τ . The size distribution is divergent because the variance

of the log size distribution grows without bound, V (Si,t) = σ2
εt. This is true even if the size

2In general, |γ| must be smaller than the largest eigenvalue of W t. Because we have normalized the row
sums of W t to one, one is its largest eigenvalue.
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drift, µg, is zero. The exogenous death rate and mimimim size requirement that we use are

standard devices for ensuring the existence of a steady-state distribution, even in this γ = 0

version of the economy (see de Wit (2005)).

Also, when γ = 0, there are no feedback effects of the size distribution into itself or

growth rate volatility. Size distribution dynamics only appear as deterministic time trends,

and growth rate volatility is constant. To see why, define the relative size of a firm as

S̃i,t = Si,t/
∑

i Si,t, and note that the sequence of cumulative distribution functions for the

(relative) size distribution satisfy the law of motion Gt+1

(
S̃
)

=
∫
Gt

(
S̃
g̃

)
f(g̃)dg̃, where f

denotes the probability density function for the relative growth rate, g̃i,t = gi,t/ga,t, and ga,t

is the size-weighted aggregate growth rate. This follows directly from the definition of the

size cdf and the law of motion for St. Since our model pertains to relative size, the expected

relative growth rate is E[g̃] = 1. Because the f is independent of size, there is a steady-state

size distribution that satisfies G = a/S̃ for some constant a (see p. 744 of Gabaix (1999) for

a derivation).

When γ > 0, size and volatility distributions are no longer static and can take on complex

feedback behavior. This is because γ > 0 violates the independence of f and S̃: both the drift

µt
(
gt+1

)
and the variance V t

(
gt+1

)
of the growth process depend on the size distribution of

the firms through the weighted connection matrix W t. Hence, the pdf of the relative growth

rate is given by f(g̃;St) where St denotes the N × 1 vector of sizes for all of the firms in the

network.

As N →∞, the pdf converges to f(g;Gt(S)), with dependence on the entire distribution

of firm sizes. The law of motion for the cdf can be stated as:

Gt+1(S̃) =

∫
Gt

(
S̃

g̃

)
ft(g̃;Gt)dg̃. (6)

In this case we cannot simply conjecture G = a/Sζ(S) and solve for a steady-state distribu-

tion. This is due to feedback from the cdf for size G(·) to the pdf for growth rates f : as the
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size dispersion increases, networks become more concentrated and the variance of growth

rates V t

(
gt+1

)
increases.3 The next subsection explores the link between concentration and

variance using a first-order approximation of the model.

To summarize, network effects break Gibrat’s law. Growth innovations are no longer iid

and as a result the size distribution will not settle down. Our model produces aggregate

dynamics as the size distribution G(·) changes over time, and the growth pdf changes along

with it because the underlying network structure is changing. In the following sections we

show that size distribution dynamics also feed back into time variation for the volatility

distribution.

2.3.2 Volatility Bounds

We can bound variation in firm-level volatility in our model. The strength of higher-order

network effects depends on γ, which governs the rate of shock decay, and the properties

of the weighted adjacency matrix W t. To develop intuition, it is helpful to consider two

polar cases. The first case that we consider features maximally strong feedback effects,

but no diversification benefits from linkages. In such a network, each firm i only has one

connection. Without loss of generality, this W t matrix can be represented with ones above

the main diagonal and zeros elsewhere. Hence, the variance of a typical firm is given by

V (g) =
σ2
ε (1− γ2N)

1− γ2

3This concentration effect creates a mean-preserving spread in the distribution of firm growth rates
F . As is clear from the law of motion in equation 6, the increase in the variance in turn increases size
dispersion by shifting more mass to the tails. The mean-preserving spread increases Gt+1(S) in the left tail,
where G is convex, and lowers Gt+1(s) in the right tail where G is concave. To see why, note that we are
computing the following expectation E[G(S/g)]. 2G′′(x) Sg3 is the second derivative w.r.t g of the function

inside the expectation operator. g is non-negative. Hence, this function is convex in g (concave) when G
is convex (concave). A mean-preserving spread applied to a convex (concave) function increases (decreases)
the expected value of that function.
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and, as N →∞, we get the standard AR(1) expression for the variance of all firms,

V (g) =
σ2
ε

1− γ2
. (7)

As γ approaches 1, volatility explodes because shocks do not decay as they propagate through

the network. Fixing γ, expression (7) represents an upper bound on volatility in our model.

Next, we consider a network structure in which each firm is connected to all other firms

and all links have the same weight. In this case, there is no concentration in suppliers’

customer bases and thus the supplier benefits from maximal shock diversification. W t has

zeros on the main diagonal and 1/N everywhere else, which implies

V (g) = σ2
ε + γ2 1

N
V (g) + γ2N(N − 1)

N2
Cov (gi, gj)

where Cov(gi, gj) = γ
N

(V (gj) + σ2
ε ). Now variance is the same for all firms and is given by

V (g) =
σ2
ε (1 + γ3 (N−1)

N2 )

1− γ2

N
− (N−1)γ3

N2

.

As N →∞, variance of all firms converges to the original shock variance σ2
ε .

These two cases, maximal concentration and maximal diversification, define a lower and

upper bound on the variance of firms in our model. For all i and t, we have

σ2
ε (1 + γ3 (N−1)

N2 )

1− γ2

N
− (N−1)γ3

N2

≤ V (gi,t) ≤
σ2
ε (1− γ2N)

1− γ2
.

As N →∞, this interval converges to [σ2
ε , σ

2
ε/(1− γ2)]. As the size distribution and, hence,

the network structure evolve, there will be variation in firms’ growth rate variance within

these bounds. If the network is sufficiently concentrated and γ approaches one, this range is

arbitrarily large.
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2.3.3 Factor Structure in Volatility

Kelly, Lustig and Van Nieuwerburgh (2012) document that there is a factor structure in firm-

level volatility. Even after removing all of the common variation in returns, the volatility of

the residuals is highly correlated across all firms. The average firm-level volatility accounts

for between 30% and 40% in the overall variation in firm-level volatility, even after removing

common sources of variation from returns. Common volatility fluctuations are shared by

firms across characteristic groupings such as industry and size. We argue that network

concentration is a natural candidate volatility factor.

To better understand the relation between the volatility and the network structure,

we focus on first-order network effects. The first order approximation to the full net-

work model allows us to develop intuition via analytical expressions for firm volatility in

the model. Provided that |γ| < 1, the first order approximation of the inverse term in

gt+1 = (I − γW t)
−1 (µg + εt+1

)
is given by

(I − γW t)
−1 = I + γW t + γ2W 2

t + γ3W 3
t + · · ·

≈ I + γW t.

Hence, we have the following first-order approximations of the growth rate and the variance

of the growth rate

gt+1 ≈ (I + γW t)
(
µg + εt+1

)
Vt
(
gt+1

)
≈ σε (I + γW t) (I + γW ′

t) .

In this first order approximation, firm i’s growth becomes

gi,t+1 ≈ (1 + γ)µg + εi,t+1 + γ
∑
j

wi,j,tεj,t+1. (8)
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Because Σε = σ2
εI, the variance for this first order approximation is

Vt (gi,t+1) ≈ σ2
ε

(
1 + γ2Hi,t

)
, (9)

where Hi,t ≡
∑N

j=1w
2
i,j,t is the size Herfindahl of firms in supplier i’s customer network.

Hence, to a first order, the variance of the firm’s growth rate is determined by its customer

network Herfindahl, the volatility of the underlying innovations, and the rate of shock decay

in the network. All dynamics in volatility, according to this model, are driven by the customer

concentration component, Hi,t. This fact allows us to identify the source of common volatility

dynamics among all firms.

The structure of our model embeds a similarity in customer network concentration for all

suppliers, regardless of their size. Thus, the only difference in the network structure across

suppliers of different size is the number of customers they have. This can be seen in the

following large N approximation.

Note E[bi,j,t] = pi,t, and bi,j,t is independent of customer j’s size. By the law of large

numbers, this implies that

1

N

∑
i

bi,j,tS
x
j,t → E[bi,j,tS

x
j,t] = pi,tE[Sxj,t], x = 1, 2.

Therefore, for sufficiently large N , a supplier’s customer concentration Herfindahl is approx-

imately

Hi,t =
1
N

∑
j bi,j,tS

2
j,t

N
(

1
N

∑
j bi,j,tSj,t

)2 ≈
E[S2

j,t]

pi,tNE[Sj,t]2
.

This bears close resemblance to the Herfindahl of the economy-wide size distribution, Ht.

By the same law of large numbers rationale,

Ht =
1

N

∑
i

S2
i,t−1

(
∑

i Si,t−1)2 ≈
E[S2

j,t−1]

NE[Sj,t−1]2
.
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Together, these results imply the following common factor structure for growth rate volatil-

ities of firms in this network economy:

Vt (gi,t+1) ≈ σ2
ε

(
1 +

1

pi,t
γ2Ht

)
. (10)

Because all firms, large and small, draw from the same economy-wide size distribution,

their customer networks have approximately equal concentration. In (10), this is captured

by all firms’ volatilities being exposed to a common factor: the Herfindahl of the entire

size distribution. Cross section differences in volatility are driven by their differences in

size, rather than differences in customer concentration, and are captured by one over the

linkage probability, pi,t. Bigger firms have a higher probability of establishing connections,

therefore they typically connect to more firms and achieve better diversification because of

this. Therefore the factor loading 1/pi,t is smaller for large firms, which scales down the level

of their volatility relative to small firms, and also makes them less sensitive to fluctuations

in the firm size distribution (they have less volatility of volatility).

2.3.4 Aggregate Volatility

Let S̃ denote the vector of relative sizes. Then we can define the aggregate growth rate of

this economy as

ga,t+1 = S̃
′
tgt+1 = S̃

′
t (I − γW t)

−1 (µg + εt+1

)
.

The variance of the aggregate growth rate is given by

V (ga,t+1) = σ2
ε S̃
′
t (I − γW t)

−1 (I − γW ′
t)
−1
S̃t. (11)

The first order approximation for ga,t+1 is

ga,t+1 ≈
∑
j

εj,t+1

(
S̃j,t + γ

∑
i

S̃i,twi,j,t

)
.
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Noting that
∑

k S̃
2
k,t = Ht and

∑
k S̃k,twk,j,t ≈ Sj,t/(NE[Sj,t]), aggregate growth rate variance

can be approximated as4

V (ga,t+1) ≈ σ2
ε

∑
j

(
S̃j,t + γ

∑
i

S̃i,twi,j,t

)2

≈ σ2
εHt (1 + γ)2 . (12)

Equation (12) predicts a strong link between dispersion in firm size (summarized by the

Herfindahl of the firm size distribution, Ht) and volatility of aggregate growth.

2.3.5 Residual Volatility

A standard approach to evaluating systematic versus idiosyncratic risk is to run factor model

regressions. The primary factor is typically a size-weighted aggregate of the left hand side

variables. It is useful to examine how the network model impacts this type of analysis. Let

β denote the N × 1 vector of betas estimated over some sample. Then the residual growth

rate is defined as:

get+1 = gt+1 − βga,t+1 =
(
I − βS̃′t

)
(I − γW t)

−1 (µg + εt+1

)
The variance of the residual growth rate is given by:

V (get+1) = σ2
ε

(
I − βS̃′t

)
(I − γW t)

−1 (I − γW ′
t)
−1
(
I − S̃tβ′

)
. (13)

4We can rewrite this expression (suppressing t) as

∑
i

S̃iwi,j =

∑
i Sibi,jSj∑

i Si
∑
j bi,jSj

≈
Sj
∑
i Si

bi,j
pi

N2E[Si]2
.

Under weak regularity, 1
N

∑
i Si

bi,j
pi
−−−−→
N→∞

E
[
Si

bi,j
pi

]
= E

[
SiE

[
bi,j
pi
|Si
]]

= E[Si], where the last equality

follows from bi,j being Bernoulli(pi). As a result,
∑
k S̃kwk,j ≈ Sj/(NE[Sj ]) = S̃j .
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The variation in W t and St will induce heteroskedasticity in residuals, even though the

underlying innovations are i.i.d. This can be clearly seen in the network model first order

approximation. In this case, the covariance between an individual growth rate and aggregate

growth is approximated by

Covt(gi,t+1, ga,t+1) ≈ Covt

(
εi,t+1 + γ

∑
j

wi,j,tεj,t+1 ,
∑
j

εj,t+1

[
S̃j,t + γ

∑
i

S̃i,twi,j,t

])

≈ σ2
ε(1 + γ)

(
Si,t

NE[Si,t]
+ γHt

)

Therefore the regression coefficient is approximated by

βi,t =
Covt(gi,t+1, ga,t+1)

V (ga,t+1)
≈ 1

1 + γ

(
γ + Si,t

E[Si,t]

E[S2
i,t]

)
.

From here, the close similarity in volatility factor structure for raw growth rate volatility

and residual volatility becomes apparent. Residual growth from a factor model, defined as

gresi,t+1 = gi,t+1 − βiga,t+1 has variance

Vt(g
res
i,t+1) = Vt(gi,t+1)− 2βi,tCovt(gi,t+1, ga,t+1) + β2

i,tVt(ga,t+1)

= Vt(gi,t+1)− Covt(gi,t+1, ga,t+1)2/Vt(ga,t+1)

≈ σ2
ε

(
1 +

1

pi,t
γ2Ht −

[
Si,t

NE[Si,t]
+ γHt

]2
)
. (14)

2.3.6 Log Normal Size Distribution

If the firm size distribution is log normal at t, then

E[Sxi,t] = exp

(
xµs,t +

x2

2
σ2
s,t

)
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where µs,t ≡ E[logSi,t] and σ2
s,t ≡ V (logSi,t). As a result, the firm size Herfindahl is

Ht ≈
E[S2

j,t]

NE[Sj,t]2
=

1

N
exp

(
σ2
s,t

)
.

Hence, in the first-order approximation, the common variance dynamics for all firms are

determined by cross section standard deviation of the size distribution, σ2
s,t:

V (gi,t+1) ≈ σ2
ε

(
1 + γ2

exp
(
σ2
s,t

)
Npi,t

)
.

According to a first-order approximation of our network model, σ2
s,t is the natural candidate

for the volatility factor provided that the size distribution is log normal.

If pi,t = Si,t/
(
Z
∑

j(Sj,t)
)

, then approximate log normality of Si,t implies V (gi,t+1) is

also approximately log normal. Furthermore, the parameters of the V (gi,t+1) distribution

depend only on the dispersion in firm sizes. This is evident from Equation 10, which implies

log
(
V (gi,t+1)− σ2

ε

)
= log(σ2

εγ
2Z)− log(Si,t) + log

(∑
j

Sj,t

)
+ log (Ht)

= log(σ2
εγ

2Z)− log(Si,t) + log (NE[Sj,t]) + log (Ht) .

Assuming that Si,t is log normal and noting that log
(∑

j Sj,t

)
≈ log (NE[Sj,t]), we see that

V (gi,t+1) is a shifted log normal where

E
[
log
(
V (gi,t+1)− σ2

ε

)]
≈ log(σ2

εγ
2Z) +

3

2
σ2
S,t

and

V
(
log
(
V (gi,t+1)− σ2

ε

))
≈ σ2

S,t. (15)

These two equations have the empirical implication imply that the dispersion in the size

distribution forecasts the mean and variance of the volatility distribution. We show in data

and model simulations that the distributions of firm size and firm volatility at any point in
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time are approximately log normal, and that variance in firm sizes Granger causes mean and

variance of the the volatility distribution.

3 Macro Evidence on Size Dispersion and Volatility

This section documents new stylized facts about the joint distribution of firm size and firm-

level volatility.

3.1 Data

We conduct our analysis using stock market data from CRSP over the period 1926–2010 and

cash flow data from CRSP/Compustat over 1952–2010. We consider market and fundamental

measures of firm size and firm volatility calculated at the annual frequency. For size, we use

equity market value at the end of the calendar, or total sales within the calendar year. Market

volatility is defined as the standard deviation of daily stock returns during the calendar year.

Fundamental volatility in year t is defined as the standard deviation of quarterly sales growth

(over the same quarter the previous year) within calendar years t to t+ 4. We also consider

fundamental volatility measured by the standard deviation of quarterly sales growth within a

single calendar year. The one and five year fundamental volatility estimates are qualitatively

identical, though the one year measure is noisier because it uses only four observations.

3.2 Approximate Log Normality of Size and Volatility

We first we present evidence that the cross section distribution of size and volatility are ap-

proximately log normal. Figure 1 plots histograms of the empirical cross section distribution

of firms’ market equity value (Panel A) and sales (Panel B), taking the log of both quantities.

The left figure in each panel shows the distribution of firm sizes pooling all firm-years from

(1926–2010 for market equity, 1970–2010 for sales) and the right figure shows a one-year

snapshot for 2010. Overlaid on these histograms is the exact normal density with mean and
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Figure 1: Log Firm Size: Empirical Density Versus Normal Density

Panel A: Size Measured as Market Equity
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Panel B: Size Measured as Sales
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Notes: The figure plots histograms of the empirical cross section distribution of log annual firm market
equity (Panel A) and log annual firm sales (Panel B). The left-hand histogram pools all years (1926-2010)
and the right-hand histogram is the one-year snapshot for 2010. Overlaid on these histograms is the exact
normal density with mean and variance set equal to that of the empirical distribution. Each figure reports
the skewness and kurtosis of the data in the histogram.

variance set equal to that of the empirical distribution. Each figure also reports the skewness

and kurtosis of the data in the histogram.

The pooled empirical distribution, and the distributions for all individual years, appear

nearly normally distributed. They demonstrate only slight skewness (always less than 0.5 in

absolute value) and do not possess substantive leptokurtosis (always less than 3.3).
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Figure 2: Log Volatility: Empirical Density Versus Normal Density

Panel A: Volatility Measured from Market Returns
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Panel B: Volatility Measured from Sales Growth
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Notes: The figure plots histograms of the empirical cross section distribution of annual firm-level volatility
(in logs). Panel A reports return volatility where, within each calendar year, we calculate the standard
deviation of daily returns for each stock. Panel B reports sales growth volatility where, for each year t, we
calculate volatility as the standard deviation of quarterly observations of year-on-year sales growth for each
stock in calendar years t to t + 4. The left-hand histogram pools all years (1926-2010) and the right-hand
histogram is the one-year snapshot for 2010 for returns and 2006 for sales growth (since sales growth volatility
is calculated over a five-year window).

Figure 2 shows cross section distributions of yearly return volatility (Panel A) and sales

growth volatility (Panel B) in logs for all CRSP/Compustat firms. Volatility also appears

to closely fit a log normal distribution, with skewness no larger than 0.4 and kurtosis never

exceeding 3.7. Figure 2 demonstrates near log normality of total return and growth rate

volatility. Kelly, Lustig and Van Nieuwerburgh (2012) show that the same feature holds for
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Figure 3: Average Volatility and Dispersion in Firm Size
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Notes: The figure plots cross section moments of the log size and log volatility distributions. All series
standardized to have mean zero and variance one.

idiosyncratic volatility.

The near-log normality of size and volatility distributions is convenient in that the dy-

namics of each distribution may be summarized with two time series: the cross section mean

and standard deviation of the log quantities. We next examine these time series in detail.

3.3 Comovement of Size and Volatility Distributions

Figure 3 plots the cross-sectional average of log firm-level volatility against two different

measures of size dispersion: the dispersion of log sales and the dispersion of log market equity

across firms. The correlation between average volatility and the market-based measure of

lagged market equity dispersion is 67%. The correlation between average firm volatility and

the lagged sales dispersion is 61%.

Figure 4 plots the cross-sectional standard deviation of firm-level volatility against the

same two measures of size dispersion. The correlation between volatility and the market-

based measure of lagged size dispersion is 60%. The correlation between volatility and lagged
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Figure 4: Dispersion in Volatility and Dispersion in Firm Size
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Notes: The figure plots cross section moments of the log size and log volatility distributions. All series
standardized to have mean zero and variance one.

sales dispersion is 41%.

Figure 5 plots the mean (top panel) and dispersion (bottom panel) of the log volatility

distribution when volatilities are calculated either from returns are sales growth. Average

return volatility and average sales growth volatility have an annual time series correlation of

64%, and their dispersions have a correlation of 49%, demonstrating a high degree of similar-

ity between market volatilities and its (more coarsely measured) fundamental counterpart.

3.4 Granger Causality Tests

This evidence in Figures 3 and 4 raises a question of causality. Our network model predicts

that movements in the size distribution cause the volatility distribution to change. When the

size distribution spreads out (contracts) at time t, the network structure for the subsequent

period adjusts, and diversification of growth rate shocks is hindered (enhanced). While

we cannot address the question of economic causality in our empirical tests, we can test

for causality in the time series sense. We use Granger causality tests to evaluate whether
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Figure 5: Fundamental and Market Volatility
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Notes: The figure plots the cross section mean (top panel) and standard deviation (bottom panel) of the log
volatility distribution for returns and sales growth. All series standardized to have mean zero and variance
one.

27



Table 1: Granger Causality Tests

Dependent Variable Independent Variables

Intercept µσ,t−1 σS,t−1

µσ,t Coeff -1.18 0.74 0.07
t-stat. -2.82 8.31 2.21

σS,t Coeff -0.28 -0.11 0.97
t-stat. -0.47 -0.88 16.01

Intercept σσ,t−1 σS,t−1

σσ,t Coeff -0.02 0.61 0.04
t-stat. -1.48 5.86 3.12

σS,t Coeff 0.20 -1.19 1.04
t-stat. 1.47 -2.25 15.88

Notes: Annual data 1926–2010. The table reports results of Granger causality tests for the ability of log
firm size dispersion (σS,t−1) to predict the mean (µσ,t) and standard deviation (σσ,t) of the log volatility
distribution. We use the market based volatility measure constructed from stock returns and the market
equity measure of size.

dispersion in firm sizes predicts the mean and standard deviation of the volatility distribution,

after controlling for own lags of the dependent variable. Table 1 presents the results from

these tests. We find that dispersion in the log market equity of US firms has statistically

significant predictive power for average log firm return volatility, and dispersion in log firm

volatility. The reverse is not true. After controlling for own lags of size moments, moments

of the volatility distribution do not predict the size distribution.5 Both of these facts are

consistent with the implications of our network model. This evidence suggests that size

dispersion leads the volatility distribution.

Table 2 shows that the strong correlation between moments of the volatility distribution

and lagged size dispersion across markets, size quantiles and industries. We find that the

5Lagged dispersion in log volatility appears to Granger cause size dispersion, but the coefficient has the
wrong sign. The hypothesis has the one-sided alternative that volatility dispersion positively predicts size
dispersion, thus this negative result leads us to fail to reject the null.
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Table 2: Composition

Corr(log σi,t, logSi,t−1) Corr(µσ,t, σS,t−1) Corr(σσ,t, σS,t−1)

All stocks -46.5% 71.7% 79.3%

By sample period / exchange
NYSE only -42.5% 62.1% 77.6%

Non-NYSE -29.4% 58.1% 40.7%

At least 50 yrs -42.5% 44.5% 62.7%

By size
Small tercile -33.1% 71.7% 51.9%

Middle tercile -11.2% 61.6% 69.8%

Large tercile -13.6% 55.9% 73.4%

By industry
Consumer products -49.0% 67.6% 71.8%

Manufacturing -54.7% 55.2% 83.7%

Technology -43.9% 82.2% 46.5%

Healthcare -59.6% 69.4% 50.6%

Other -38.6% 63.3% 65.7%

Notes: Annual data 1926-2010. We use the market based volatility measure constructed from stock returns
and the market-based measure of size (market equity). The first column reports the time series average of the
annual cross-sectional correlation between lagged log size and log volatility. Column 2 reports the time-series
correlation between average log volatility (µσ,t) and lagged log size dispersion (σS,t−1) and column 3 reports
the correlation between dispersion in log volatility (σσ,t) and lagged log size dispersion.
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the size distribution’s predictive correlation with both mean volatility and dispersion in

volatility is robust in each of these sample decompositions. Size dispersion predicts volatility

moments among either NYSE or NASDAQ stocks, among large and small stocks, and within

all industries.

Figure 6: Trend and Cycle in Size and Volatility Distributions
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Notes: The figure plots HP-filtered trend and cycle components of time series moments of size and volatility
distributions using smoothing parameter of 50.
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3.5 Frequency Decomposition

To distinguish between the trend and cycle in the size and volatility moments, we apply the

Hodrick-Prescott filter with a smoothing parameter of 50. The top panel shows the trend

component. The bottom panel shows the cycle component. The top panel plots the trend in

the cross-sectional average of log firm-level volatility against the cross-sectional dispersion of

log market equity and log market volatility. The correlation between the trend components

in average volatility and the market-based measure of lagged size dispersion is 90%. The

correlation between lagged size dispersion and the trend component in market volatility is

55%.

The correlation between the cycle component in average log volatility and lagged market

equity dispersion is 26%. These results suggest that the bulk of the predictive relation

between the dispersion in the firm size distribution and moments of the volatility distribution

occurs at lower frequencies. However, there is also significant evidence of correlation between

cyclical volatility and size dispersion.

3.6 Volatility Factor Structure

Recent research has documented a puzzling degree of common variation in the panel of

firm-level volatilities. Kelly, Lustig and Van Nieuwerburgh (2012) show that firm-level stock

return volatilities share a single common factor that explains roughly 35% of the variation

in log volatilities for the entire panel of CRSP stocks. This R2 is nearly twice as high,

roughly 70%, for the 100 Fama-French (1993) portfolios. They also show that this strong

factor structure is not only a feature of return volatilities, but also holds for sales growth

volatilities. The puzzling aspect of this result is that the factor structure remains nearly

completely intact after removing all common variation in returns (or sales growth rates) by

extracting principal components, so common volatility dynamics are unlikely to be driven

by an omitted common factor.

The results of Section 2.3.3 suggest that our granular network model may be able to
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Table 3: R2 of Volatility Factor Models

Factors

σS,t−1 µσ,t−1 µσ,t

Panel A: Return Volatility

Total 24.4 25.9 39.3

Residual 24.7 26.5 37.5

Panel B: Sales Growth Volatility

Total 21.8 23.4 24.3

Residual 21.4 25.8 27.8

Notes: The table reports factor model estimates for the panel of firm-year volatility observations. In Panel
A, total volatility is measured as standard deviation of daily returns within the calendar year, and residual
volatility is estimated from daily regressions of firm returns on the value-weighted market portfolio within
the calendar year. In Panel B, total volatility in year t is measured as standard deviation of quarterly
observations of year-on-year sales growth for each stock in calendar years t to t + 4. Residual volatility is
measured from regressions of firms sales growth on the sales-weighted average growth rate for all firms. All
volatility factor regressions take the form log σi,t = ai + bifactort+ ei,t. We consider three different volatility
factors. The first, motivated by our network model, is the lagged cross section standard deviation of log
market equity, σS,t−1. The second and third factors we consider are the lagged and contemporaneous cross
section average log volatility, µσ,t−1 and µσ,t. We report the pooled factor model R2 in percent.

explain the puzzling comovement in firm volatility. Equation 10 predicts an approximate

factor structure among the volatilities of all firms, and suggests that concentration of the

lagged economy-wide size distribution is the appropriate factor. Furthermore, Equation (14)

predicts that factor model residuals will possess a similar degree of volatility comovement,

despite residual growth rates themselves being nearly correlated.

In Table 3, we report results of panel volatility regressions for three different factor mod-

els. The panels consist of volatility of total returns (or sales growth rates) and idiosyncratic

volatilities. Idiosyncratic volatilities are calculated in a one factor model regression of stock

returns on the value-weighted market return or, for sales growth, of individual growth rates

on the sales-weighted aggregate growth rates. In both cases, residuals have average pairwise

correlations that are below 2% in absolute value, despite the original returns having average

correlations over 25% on average.
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Figure 7: Average Firm Volatility by Size Quintile

1930 1940 1950 1960 1970 1980 1990 2000 2010

−4.5

−4

−3.5

−3

−2.5

A
v

er
ag

e 
L

o
g

 R
et

u
rn

 V
o

la
ti

li
ty

 

 

1 (Small)

2

3

4

5 (Big)

Small 2 3 4 Big
0.25

0.3

0.35

0.4

0.45

V
o

la
ti

li
ty

 o
f 

V
o

la
ti

li
ty

Notes: The top panel plots average log return volatility within CRSP market equity quintiles. The bottom
panel reports time series standard deviation of average volatility within each quintile.

The first factor that we consider is the standard deviation of the lagged log market equity

distribution, in line with Equation 15. The second factor we consider is the sales-weighted

average of the left hand side volatility variable. The cross section average is a natural

benchmark for factor model comparison and it is typically highly correlated with the first

principal component of the panel. When this factor is used, we estimate the model with

the lagged average volatility to maintain comparable timing with the conditioning factor
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implied by our model, and also with the contemporaneous average volatility. We report the

full panel R2 based on each factor.

The table shows that the lagged size dispersion has the same degree of explanatory power

as the lagged average volatility. Both factors capture about 25% of the panel variation in

firm return volatility (Panel A). The contemporaneous average volatility can explain closer

to 40% of the variation, but uses a finer conditioning information set. Panel B repeats

these regressions for the panel of total and idiosyncratic sales growth volatility. In this case

the dispersion in firm sizes explains over 20% of the volatility panel variation, compared to

around 25% for both contemporaneous and lagged average sales growth volatility.

The model also predicts that larger firms have lower loadings on the size dispersion factor,

which lowers both the level of their volatilities relative to small firms, and also lowers their

volatility of volatility. Figure 7 plot the average log firm volatility within size quintiles each

year (top panel), and the volatility of average volatility for size quintiles (bottom panel).

These results show that large firms have lower levels of volatility and also less time series

variation in volatility.

Table 3 and Figure 7 are consistent with the model’s prediction that dispersion in firm

sizes predicts the entire panel of firm-level volatilities.

3.7 Aggregate Volatility Accounting

We find that accounting for changes in the size distribution nullifies the volatility trends

identified in work by Campbell et al. (2001). Figure 8 plots the log of aggregate market

volatility, as well as the residual from a regression of log market volatility on the cross-

sectional dispersion in log market equity. This regression has an R2 of 50.1%. The dotted

lines show estimated time trends in the original volatility data (black) and in the residual

(gray). The figure shows that, after controlling for fluctuations in the firm size distribution

over time, there is no anomalous trend in average idiosyncratic volatility in the post-war era.

This is consistent with the derivation of Section 2.3.4, which argues that the dispersion in
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Figure 8: Trends in Average Firm Volatility
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Notes: The figure plot log volatility of the value-weighted market equity portfolio (black line) as well as
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(gray line). It also shows estimated time trends in the original volatility data (black dotted line) and in the
residual (gray dotted line), and reports the t-statistic for the time trend coefficient estimate.

firm size influences aggregate volatility.

4 Micro Evidence of Granular Networks

4.1 Data

Our data for annual firm-level linkages comes from the Compustat database. It includes

the fraction of a firm’s dollar sales to each of its major customers. Firms are required to

supply customer information in accordance with Financial Accounting Standards Rule No.

131, in which a major customer is defined as any firm that is responsible for more than
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Figure 9: Customer-Supplier Network Degree Distributions
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Notes: The figure plots log-log survivor plots of the out-degree and in-degree distributions of the Compustat
customer-supplier network data pooling all firm-years for 1980–2009.

10% of the reporting sellers revenue. Firms have discretion in reporting relationships with

customers that account for less than 10% of their sales, and this is occasionally observed. To

compare the linkage data to our model, we strictly impose the 10% sales truncation in both

the data and simulation when we calibrate the model. We discuss this further in the next

section. Our data set covers the period 1980-2009, and includes 48,839 customer-supplier-

year observations. Our data has been carefully linked to CRSP market equity data by Cohen

and Frazzini (2008), which allows us to associate information on firms’ network connectivity

with their market equity size and their return volatility.

4.2 Network Data Overview

Figure 9 provides a summary of network connections for customers and suppliers in the

Compustat linkage data. The left panel shows the distribution of number of links by supplier

(out-degree) on a log-log scale, while the right panel shows the distribution of links by

customer (in-degree). Out-degrees range between one and 24, while in-degrees range from one
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Figure 10: Customer-Supplier Network Linkage Weights
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Notes: The figure plots the histogram of Compustat customer-supplier sales weights for the raw data (left
panel), and when we strictly imposed the 10% sales threshold in our calibration. Plots pool all firm-years
for 1980–2009.

to 130. We expect that both of these distributions are highly distorted due to the truncated

nature of the data. Out-degrees can reach 24 since some suppliers (23%) voluntarily report

customers that fall below the 10% sales threshold. The maximum out-degrees falls to 5

when we strictly impose the 10% sales truncation. Figure 10 reports histograms of weights

of customer-supplier sales linkages pooling all supplier-year observations. The distribution

for the raw data, in which some suppliers voluntarily report customers below the 10% sales

threshold, is on the left. The right panel shows the weight distribution when we strictly

impose the 10% sales truncation in our calibration below.

We first investigate our modeling assumption that shocks are transmitted from customers

to suppliers, and not the reverse. Table 4 reports estimates for how firms’ sales growth

rates are affected by growth of firms in their customer-supplier networks. In column (1) we

estimate a pooled OLS regression model for upstream growth rate transmission that takes

the form gi,t+1 = a+ b
∑

j wi,j,tgj,t+1 + ei,t+1 where the dependent variable is the sales growth

rate of supplier i in year t + 1 and
∑

j wi,j,tgj,t+1 is the network effect of i’s customers on

i’s growth rate. The weights are taken directly from the from Compustat linkage data.
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Table 4: Upstream versus Downstream Growth Rate Transmission

Supplier Growth Customer Growth

(1) (2) (3) (4) (5) (6)

Linkages Growth 0.901 0.788 0.642 -0.022 -0.024 -0.022

8.63 7.91 5.17 -2.24 -2.45 -2.06

Aggregate Growth 0.760 1.045

6.74 8.72

R2 (%) 3.11 4.50 1.84 0.13 3.45 0.13

Notes: The table reports estimates for how firms’ sales growth rates are affected by growth of firms in their
customer-supplier networks. In column (1) we estimate a pooled OLS regression model for upstream growth
rate transmission that takes the form gi,t+1 = a + b

∑
j wi,j,tgj,t+1 + ei,t+1 where the dependent variable is

the sales growth rate of supplier i in year t+ 1 and
∑
j wi,j,tgj,t+1 is the network effect of i’s customers on

i’s growth rate (calculated from Compustat linkage data). Column (2) runs the same regression but also
controls for gagg,t+1, the sales-weighted average growth rate for all firms in the sample. In column (3) we allow
for supplier specific loadings on the aggregate growth factor gagg,t+1 by first running univariate time series
regressions of the form gi,t+1 = ci + digagg,t+1 + ei,t+1, then running a second-stage pooled OLS regression
of the residuals on the network-based growth effect: ei,t+1 = a+ b

∑
j wi,j,tgj,t+1 + vi,t+1 (only second stage

estimates are reported). Columns (4), (5) and (6) report downstream transmission model estimates, which
take the same form as (1), (2) and (3) except the dependent variable is the growth rate of each customer,
and the network effect is calculated as the weighted average growth rate of suppliers a given customer (with
weights being the value of customer purchases from each supplier divided by the total sales of the customer
firm). All growth rates are de-meaned at the firm level, and standard errors are clustered by firm and year.

The regression coefficient b, which is the spatial equivalent of an autoregression coefficient,

is analogous to γ in our model. We find that a customer’s weighted growth rate has an

influence of b̂ = 0.90 on its immediate suppliers, 0.902 on its suppliers suppliers, and so forth

through the network. Thus a customer’s growth rate shock has a half-life of 8 steps through

the network.

Column (2) runs the same regression but also controls for gagg,t+1, the sales-weighted

average growth rate for all firms in the sample. This regression allows us to test whether

customer linkages have explanatory for a supplier’s growth rate after controlling for a simple

one-factor structure in growth rates where all firms have the same loading on the factor.

After controlling for aggregate growth, the coefficient on weighted customer growth rates is
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Figure 11: 1980 Network Snapshot

AT&T
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GE
JCPenney
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United Tech.
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Notes: The figure shows one region of the Compustat customer-supplier network for 1980. Size of nodes
represent log sales of a firm, and arrows represent directed links from supplier to customer (with arrow
thickness corresponding to the weight of the link). We highlight certain central nodes including AT&T,
IBM, United Technologies, General Electric, Sears, JCPenney, General Motors and Ford.

0.79 and is highly statistically significant (in all cases standard errors are clustered by firm

and year).

In column (3) we allow for supplier specific loadings on the aggregate growth factor gagg,t+1

by first running univariate time series regressions of the form gi,t+1 = ci + digagg,t+1 + ei,t+1,

then running a second-stage pooled OLS regression of the residuals on the network-based

growth effect: ei,t+1 = a + b
∑

j wi,j,tgj,t+1 + vi,t+1. We find a second stage coefficient on

the upstream network effect of 0.64, which is again highly significant. Columns (4), (5) and

(6) report downstream transmission model estimates, which take the same form as (1), (2)
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and (3) except the dependent variable is the growth rate of each customer, and the network

effect is calculated as the weighted average growth rate of suppliers a given customer (with

weights being the value of customer purchases from each supplier divided by the total sales

of the customer firm). The estimated downstream transmission effect is economically small,

only −0.02. While this estimate is marginally significant, the sign is negative and we view

these results as a failure to reject the null of no downstream effect.

In Table 5, we report correlation statistics of the customer-supplier linkage data that are

relevant to the model structure described in Section 2. We calculate cross section correlations

for each yearly network realization in the Compustat linkage data. We also report the time

series average of annual correlations and a pooled correlation for all firm-year observations

combined. In our network data calculations, size is defined as firm’s annual sales.

The model assumes that suppliers have stronger connections with their larger customers,

and the table shows that this is indeed a very strong feature of the Compustat linkage data.

For each supplier i, we calculate the rank correlation between its customer’s total sales, and

the fraction of i’s revenues that are due to each customer. We then average this number

across all suppliers in a given year, this is reported in column (1). In an average year, a

typical supplier has a rank correlation of 61.7% between the size of its customers and the

fraction of total sales that each customer is responsible for. In the pooled supplier-year

panel, this correlation is 70.8%. This supports our assumption that linkage weight is closely

related to the size of the customer.

We also assume that larger suppliers are connected to more customers on average. The

data cannot speak directly to this assumption due to the truncation of all linkages whose

weights fall below 10%. For example, a small firm that has a single customer accounting for

100% of its revenue can show up as having more links than a firm with 11 equally important

customers (weights of 9.1%) due to truncation. Column (2) shows that any correlation that

might exist between size and number of customers is largely destroyed by truncation, with

an average annual correlation of 1.9% and a pooled correlation of 6.9%.
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Column (3) reports the correlation between a supplier’s size and the size Herfindahl of its

customer network. As in the model, a supplier’s customer Herfindahl is calculated based on

the supplier’s weighted out-degrees, Hout
t,i =

∑
j w

2
i,j,t. Due to the log normal feature of our

model, we calculate correlations between log size and log Herfindahl. Our model predicts

that larger suppliers are more diversified and thus have lower customer Herfindahls. The

average and pooled correlations of -36.7% and -35.0% are consistent with this prediction.

Column (4) compares suppliers’ log network Herfindahls to their log return volatilities

calculated from CRSP data. The model suggests that well-diversified suppliers (those with

lower Herfindahls) have lower volatility. This relationship is also identified in the linkage

data, where Herfindahl and volatility (in logs) have an average correlation of 30.6% (or

31.4% when supplier-years are pooled). Column (5) repeats this calculation using quarterly

sales growth volatility in place of return volatility and uncovers a similar association, with

average and pooled correlations of 21.2% and 20.1%.

These correlations are visualized in Figure 11, which presents a snapshot of the Compus-

tat customer-supplier network in 1980, zooming in on a region of the network dominated by

retail firms (Sears, KMart and JC Penney), automotive manufacturers (Ford and General

Motors), technology/telecom firms (IBM and AT&T) and industrials (General Electric and

United Technologies). The size of each nodes is proportional to a firm’s log sales, and edges

between nodes are proportional to wi,j,t. Arrows on edges point from customer to supplier.

Whereas columns (1)-(5) focus on supplier networks, viewing the network from customers’

perspectives is also informative for understanding network structure. In column (6) we

calculate the correlation between customer size and in-degree. According to our model, the

probability that a connection exists between supplier i and customer j depends only on i’s

size and is independent of firm j’s size. Thus, our model would predict a zero correlation

between size and in-degree in the absence of link truncation. Because links with weights

below 10% are not observed, and if larger customers are associated with higher linkage

weights as we propose, then we would expect to see a strong association between customer
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size and in-degree in the truncated data. For instance, in our model, large firms like Apple

or Walmart typically dominate their suppliers sales due to their massive sizes. While we

assume smaller firms are equally likely to be customers as large firms, our model predicts

that these weak links with small customers will not show up in the data, leaving large firms

counted as customers far more often, and giving rise to the high correlation between size and

in-degree that we see.

Column (7) shows that there is effectively zero association between a customer’s in-degree

Herfindahl, H in
t,i =

∑
j w

2
j,i,t, and its size. The average and pooled correlations are -0.8% and

-1.4%. Nor is there an association between customer’s in-degree Herfindahl and customer

volatility, as shown by correlations weaker than ±1.8% in columns (8) (return volatility) and

(9) (sales growth volatility).

A comparison of results in columns (1)-(5), which summarize features of suppliers net-

works, to results on customer networks in columns (6)-(9) suggests an interesting interpre-

tation of shock propagation through customer-supplier networks. First, results suggest that

the strength of links depend strongly on customer size (column (1)) as in our model. Second,

the association between a supplier’s size and its number of customers (columns (2) and (6))

in the data is also consistent with our model assumption once the data truncation is taken

into account. Third, suppliers’ linkage concentration appears to associate strongly with sup-

pliers’ volatility, while this is not the case for customers. This is consistent with the notion

that shocks are propagated upstream, from customers to suppliers, and that the effects of

these shocks on firms’ volatility depends on how well-diversified a firm is in its customer

base.

A large literature has examined the determinants of firm level volatility on the basis

of firm characteristics, including Black (1976) who proposed that differences in leverage

drive heterogeneity in firm volatility, Comin and Philippon (2006) who argue for industry

competition and R&D intensity, Davis et al. (2007) who favor age effects, and Brandt et al.

(2010) who argue that institiutional ownership is a key volatility driver. Our model predicts
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that there are two quantities that are equivalent in their determination of a firm’s volatility –

its size and its customer network concentration. Table 6 shows results of panel regressions of

firm-level log annual return volatility on size and the customer-supplier network out-degree

Herfindahl, while controlling for a range of firm characteristics including log age, leverage,

industry concentration, institutional holdings, as well as industry and cohort fixed effects.

Consistent with our model, we find that the two most important determinants of volatility

are size and customer-size concentration. A 100% increase in the size of the firm decreases

volatility by between 12% and 16%. An increase of customer Herfindahl from zero to one

increases volatility by 88% without controlling for size; the effect is 17% when we control

of size. Note that, in our model, size and network concentration are redundant since size

determines network structure. Within our network model, a supplier’s size and its customer

Herfindahl are nearly perfectly correlated in the cross section. Given that concentration in

the sales network is measured with substantial noise, it is highly likely that size captures an

important part of the true concentration effect.

The results of this section are meant to motivate our network model. In Section 5 we

analyze a complete calibration of our model to the Compustat linkage data and firm volatility

data to draw broader conclusions regarding size and volatility in granular networks.

4.3 BEA Industry Input-Output Network

We have thus far presented our model and evaluated empirical networks at the firm level. As

further corroborating evidence, we present evidence the industry-level input-output networks

appear largely consistent with the network structure that we have proposed. Industry input-

output data are from the Bureau of Economic Analysis (BEA) at five year intervals between

1963 and 2002. Because industry definitions vary quite dramatically over time (with degree

of disaggregation ranging form roughly 350 to 450 industries depending on the year), it

is difficult to analyze network dynamics. However, this data is especially informative for

evaluating cross section association between industry size and network structure since this

45



Table 7: BEA Industry Size, Volatility and Network Structure

Correlation between ... logSi,t logSi,t logSi,t logSi,t

and ... Out-Degree logHi,t In-Degree logHi,t

1963 0.424 -0.053 0.173 0.315

1967 0.513 -0.091 0.478 0.203

1972 0.549 -0.154 0.585 0.246

1977 0.529 -0.174 0.547 0.230

1982 0.470 -0.158 0.554 0.117

1987 0.506 -0.290 0.643 0.111

1992 0.583 -0.274 0.762 0.178

1997 0.471 -0.187 0.703 0.329

2002 0.504 -0.233 0.672 0.390

Average 0.505 -0.179 0.569 0.235

Notes: Cross section correlations of industry size, out-degree, and out-Herfindahl from BEA industry bench-
mark input-output tables. The number of industries range between 300 and 500 depending on the year.

data does not suffer the same truncation issue that we face in Compustat firm-level data.

Table 7 reports industry network correlations analogous to the firm network correlation in

Table 5. We find the log total output of a supplier industry and the number of industries that

it supplies to has an average correlation of 50.5% (ranging between 42.4% and 58.3% across

years). Similarly, an industry’s size has an average correlation of −17.9% with its purchaser

Herfindahl (range of -5.3% to 29.0%). Both of these facts, that larger supplier industries

have more connections and are better diversified, are consistent with our model. On the

purchaser side, we find an average correlation of industry size with in-degree of 56.9%, and

with supplier Herfindahl of 23.5%. Our model would not predict that a purchaser industry’s

in-degree would increase with size. But neither do we find evidence to suggest that purchaser

industries are experiencing any diversification benefits from their supplier network, since

larger industries have a higher in-degree concentration, not lower. On balance, we find the

BEA industry network data to be consistent with the network structure we propose.
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5 Simulated Model Economy

In this section we calibrate the granular network model of Section 2 to match dynamics of

the aggregate firm size and firm volatility distributions, as well as features of the customer-

supplier network found in Compustat data. The model is deliberately simple along a number

of dimensions so as to focus on the main mechanism: The size distribution determines

network structure, and thereby determines the degree of diversification at the firm level.

5.1 Calibration

We simulate our model for N = 2000 firms and 1300 periods (years). We discard the first

300 observations to let the network settle down to its long run distribution, and compute our

statistics by averaging over the last T = 1000 years. In each period we report moments based

on the sample of the largest 1000 firms. Focusing on the top 1000 firms is the model’s way

of recognizing that there are firms in the real world that are not measured in our Compustat

sample (e.g., private firms), and that the firms that are measured are connected to these

unmeasured firms affecting the former firms’ network, size growth, and volatility. Our choice

of N=2000 is dictated by computational considerations. To further improve comparability

between model and data, we compare the model results for a constant sample of 1000 firms

to an appropriate corresponding Compustat subsample. One approach would be to define

the comparable subsample to be that of the 1000 largest firms in Compustat each year. This

approach is somewhat problematic because the top-1000 sample represents a time-varying

slice of the firm size distribution. Instead, it is more appropriate to compare the model to a

fixed slice of the firm size distribution. We focus on the top-33%, a sample which contains

1,000 firms on average in the data. For completeness, we also report the empirical moments

for the entire distribution of publicly traded firms (3000 firms on average). Size in the data

is measured as market capitalization deflated by the Consumer Price Index.

In order to compare variance moments in model and data, we want to take into account
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that empirical variances are estimated with noise. Therefore, we report “estimated” variance

moments in the model, which we compute as:

log
(
V̂ art[gt+1]

)
= log (V art[gt+1]) + et+1

where e ∼ N (0, σ2
e) and σe is the time series average of the cross-sectional standard deviation

of log(V art[gt+1]).

Because network data are truncated, as explained above, we implement the same trunca-

tion inside the model. That is, we set the weight wij,t equal to zero whenever wij,t < 0.10.6

Table 8 describes the calibration of the benchmark model (M1). We set the mean exoge-

nous firm growth rate µ equal to zero, which is the growth rate we observe for real market

capitalization in the full cross-section.7 The initial firm size distribution is log normal with

mean µS0 = 11.00 and standard deviation σS0 = 1.06. These numbers equal the time-series

average of the observed cross-sectional mean and variance of the top-33% firm-size distribu-

tion.

The parameter Smax is the maximum size that a new firm can take on, which we take to

be the median of the initial firm size distribution (a log normal with parameters µS0 and σS0).

The parameter Smin is the truncation point below which a firm exits. We set Smin equal to

the median of min {Xs}Ns=1 for logXs ∼ N (µS0 , σS0). The exogenous firm destruction rate

δ is set to 5%, close to the time-series average firm exit rate in our sample of 4.2%. The

probability of forming a connection between a supplier and a customer is governed by the

6As in the actual data, our model-based moment calculations do not rescale the weights from our sim-
ulation to sum to one across customers j, so

∑
j wij,t < 1. As discussed above, SEC regulation requires

that firms report all customers responsible for 10% or more of a supplier’s sales. Some firms report more
customers, however. We strictly impose the 10% truncation in the data by treating any relationship with
reported sales weight below 10% as missing.

7The observed growth annual rate is 8% per year in the top of the firm size distribution, but this number
is upwardly biased due to selection. Firms that leave the top of the size distribution are excluded from the
growth calculations while firms that enter the top group are newly included.
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Table 8: Calibration

Parameter Description M1 M2 M3 M4 M5

1. N # firms reported each period 1000 1000 1000 1000 1000

2. T # years in simulation (after burn-in) 1000 1000 1000 1000 1000

3. µg Exogenous firm growth rate 0 0 0 0 0

4. µSo Mean initial log size distribution 11.00 11.00 11.00 11.00 11.00

5. σSo Standard deviation initial log size distribution 1.06 1.06 1.06 1.06 1.06

6. log (Smin) Size below which existing firms exit 7.61 7.61 7.61 7.61 7.61

7. log (Smax) Maximum size for a new firm 11.63 11.00 11.00 11.00 11.00

8. δ Exogenous firm destruction rate 0.05 0.05 0.05 0.05 0.05

9. Z Governs likelihood of new connections 0.35 0.35 0.35 0.35 0.10

10. κ Governs the survival rate of connections 0.5 0.5 0.5 0.5 0.5

11. ψ Governs the importance of connections 1 1 1 1 0.1

12. γ Importance of the network 0.95 0.95 0.95 0.75 0.95

13. σ Fundamental shock volatility (i.i.d.) 0.22 0.22 0.22 0.30 0.25

14. network Full-degree or first-degree approximation F A F F F

15. p(·) Governs probability of a connection B B A B B

Notes: In row 14, F indicates full-degree network and A indicates first degree-approximation. In row 15, B indicates benchmark
and A indicates alternative assumption.

function p(·), which we take to be linear in the size of the supplier:

pi,j,t =
Si,t

Z
∑

k{Sk,t}
. (16)

The scalar Z governs the baseline likelihood of a connection for a firm i. We set Z = 0.35

which implies that the largest firm has a likelihood of connection of 27% on average. The

probability that a firm i that was connected to firm j in period t− 1 is again connected to

that same firm j is given by

max {pi,j,t + κ, 1} .

The parameter κ gives the additional probability of a connection when firm i and j were

already connected in the previous period. This additive term is not there for new firms

49



(with no pre-existing connections). Thus, κ governs the persistence of connections. We set κ

equal to 0.5 to match the observed 54% time-series average death rate of truncated links. In

our benchmark model the average death rate of truncated links is 57% whereas the average

death rate of untruncated links is 46%.

The two key parameters are γ, which governs the persistence of the network, and σ,

which is the fundamental shock volatility. The parameter γ governs how important shocks

to customers’ growth are to a supplier. The closer γ is to one, the more important are

higher-degree (indirect) effects, i.e., effects beyond the direct supplier-customer relationship.

These two parameters are set to match as best as possible the mean and dispersion of firm

volatility.

5.1.1 Alternative Calibrations

We also compute several other models that illustrate various features of the model. In

model 2 (M2), we use the same parameters but compute the first-degree approximation to

the network discussed in Section 2.3.3.

In model 3 (M3), we use the same parameters but change the probability of a connection

from the benchmark equation (16) to the alternative

pi,j,t =
1

Z + log
(

maxk{Sk,t}
Si,t

) ; prob of conn = max {pi,j,t + κ, 1}

where we use the same scalar values for Z and κ than in the benchmark specification. The

alternative p function delivers a less steep relationship between firm size and the likelihood

of a connection than our benchmark specification.

Model 4 (M4) uses the full network model but sets γ = 0.75. A lower γ implies that

higher-order network effects are less important (less spatial persistence). We increase σ to

0.30 so that the model generates the same mean variance as in the benchmark calibration.

In Model 5 (M5) we consider a calibration that delivers a substantially lower out-degree
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Herfindahl than the benchmark model, bringing it closer to the data. We change the function

wi,j,t, which governs the importance of customer j in supplier i’s network:

wi,j,t =
bi,j,tS

ψ
j,t∑

k 6=i bi,k,tS
ψ
k,t

∀j 6= i

We make the importance of a given customer less steep in customer size by setting the

curvature parameter ψ = 0.1. All other calibrations set ψ = 1. To further lower the

out-degree Herfindahl, we lower Z from its benchmark value of 0.35 to 0.10, making the

probability of a connection steeper in supplier size. This generates more connections on

average. Finally, we increase the volatility of the shocks to 25% so that the model generates

the same mean variance as in the data.

In all simulations, we use the exact same random draws (and seed for the random number

generator) to enhance comparability across models. All variation across models is thus pro-

duced by endogenously changing size and volatility distributions, not by random differences

across simulations.

5.2 Calibration Targets

This section documents features of of the size, volatility and in/out-degree distribution of

U.S. firms. We will make use of these moments to develop a calibrated version of our network

economy.

5.2.1 Size Distribution Moments

Table 9 reports moments of the cross-sectional log size distribution (logS) in Panel A and the

firm growth distribution (gt = logSt/ logSt−1) in Panel B. All reported moments are time-

series averages unless explicitly mentioned otherwise. The first column reports moments for

the full cross-section of firms observed in Compustat. The second column reports results

for the top-33% of Compustat firms in each year. Column 2 is the main column of interest
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Table 9: Firm Size Distribution

(1) (2) (3) (4) (5) (6) (7)

All Top-33% M1 M2 M3 M4 M5

Panel A: Cross-sectional Moments of Log Size

Avg 9.61 11.63 11.59 11.25 11.67 11.73 11.34

SD 1.79 1.06 0.95 0.81 0.87 1.20 0.85

5% 6.86 10.38 10.54 10.41 10.68 10.53 10.47

10% 7.39 10.47 10.62 10.47 10.76 10.61 10.53

25% 8.33 10.78 10.86 10.67 11.01 10.85 10.73

Med 9.48 11.39 11.35 11.02 11.48 11.38 11.11

75% 10.77 12.25 12.08 11.60 12.12 12.27 11.70

90% 12.05 13.10 12.90 12.33 12.83 13.35 12.46

95% 12.76 13.64 13.45 12.86 13.33 14.12 13.02

Panel B: Cross-sectional Moments of Log Growth Rates

Avg 0.00 0.08 −0.00 0.00 −0.01 0.00 0.00

SD 0.44 0.33 0.32 0.26 0.22 0.39 0.27

5% −0.69 −0.39 −0.52 −0.43 −0.37 −0.64 −0.44

10% −0.50 −0.28 −0.40 −0.33 −0.29 −0.50 −0.34

25% −0.23 −0.11 −0.21 −0.17 −0.16 −0.26 −0.18

Med 0.00 0.06 −0.00 0.00 −0.01 0.00 0.00

75% 0.24 0.25 0.20 0.18 0.14 0.26 0.18

90% 0.49 0.47 0.39 0.33 0.28 0.50 0.34

95% 0.68 0.63 0.52 0.43 0.36 0.65 0.44

Panel C: Time Series Properties of Size Distribution

SD of σS,t 0.24 0.14 0.26 0.04 0.43 0.10 0.14

AR(1) σS,t 0.947 0.939 0.997 0.963 0.990 0.979 0.995

SD of σg,t 0.15 0.11 0.06 0.01 0.01 0.02 0.01

Ht 0.010 0.012 0.028 0.019 0.025 0.093 0.033

Notes: All reported moments in Panels A and B are time-series averages of the listed year-by-year cross
sectional moments (cross section average, standard deviation, and percentiles) for the sample 1926–2010.
The first column reports the full cross-section of firms . The second column reports results for the top-33%
of firms in each year. Column 3 reports the corresponding moments for the benchmark model (M1). Column
4 shows the first-degree approximation of the benchmark model (M2). Columns 5-7 show three variations of
the full-degree network model for different parameter values, described in the main text, and labeled M2-M5.
Panel A reports moments of the log size distribution, where size is defined in the data as market equity.
Panel B reports moments of the cross section distribution of growth rates (changes in log size). Panel C
reports the time-series standard deviation and time-series persistence of size dispersion σS,t, defined as the
cross-sectional standard deviation of log size, the time-series standard deviation of the cross section standard
deviation of log growth rates σg,t and the time-series average of the economy-wide Herfindahl index Ht.
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in the data. For example, 11.63 is the time-series average of the average log size of the

large-firm sample, which is naturally higher than the 9.61 for the full Compustat sample.

The dispersion of the log size distribution is 1.06 for the top-33% group and 1.79 for the full

sample.

Panel B shows that average firm growth is zero (in real terms) in the population at large,

and 8% per year in the top of the firm size distribution. The range of growth rate outcomes

is symmetric for the full cross-section but not for the top group. The fifth percentile of the

firm growth distribution in the top group is substantially less negative than in the population

at large.

Panel C reports aggregate moments of the size distribution. The first two rows show that

size dispersion (the cross-sectional standard deviation of log size) has high variability over

time and is highly persistent. The time series standard deviation is 24% for all firms and 14%

for the top-33% firms. The third row shows that the cross-sectional standard deviation of

size growth (log size changes) is also volatile over time. The time series standard deviation

is 15% for all firms and 11% for the top-33% firms. These results confirm that the size

distribution moves around considerably over time. Finally, the Herfindahl index of size, a

standard concentration measure (not to be confused with the Herfindahl for a particular

firm, which is computed based on the firms it is connected to) is 0.012 in the data.

5.2.2 Volatility Distribution

Table 10 reports moments of the cross-sectional log variance distribution. In columns 1 and

2, we compute the variance as the realized variance of daily stock returns within the year,

which is then annualized (multiplied by 252), and logged. In columns 3 and 4, we compute

the variance based on twenty quarters worth of year-over-year growth rates in log sales.

The window includes four growth rates in the current year and 16 in the next four years.

Because volatilities (standard deviations in levels) are more intuitive than log variances, we

exponentiate the moments of log variance and then take their square root, which is what
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is reported in Table 10. All reported moments are time-series averages unless explicitly

mentioned otherwise.

Panel A shows that average firm return-based volatility is 41% per year for the full cross-

section and 30% per year for the large-firm sample. Average sales-based volatility is 29% for

the full sample and 24% for the large-firm sample. The range of return-based (sales-based)

volatilities goes from 17% (8%) at the fifth percentile to 54% (77%) at the 95th percentile

for the latter group. The cross-sectional dispersion in return volatility is 73% in Column

2 and 97% in the full cross-section reported in Column 1. Sales-based volatility has even

larger dispersion of 142% and 151%, in Columns (4) and (3) respectively.

Panel B shows moments of the joint cross-sectional distribution of firm size and firm

volatility. The first row computes the cross-sectional correlation between log size at time

t and log variance at time t + 1, for each t and then reports the time-series average. The

second row reports the slope coefficient (beta) of a cross-sectional regression of log variance

at time t + 1 on a constant and log size at time t; it reports the time-series average of that

slope. Both are strongly negative in the data showing that large firms have lower volatility

over the next period.

Panel C reports aggregate moments of the the volatility distribution and the joint size-

volatility distribution. The first row shows the time-series standard deviation of average

volatility: 69% in the full sample compared to a mean of 41% and 64% in the top-33% sample

compared to a mean of 30%. Average volatility is highly variable over time. The second row

shows that the cross-sectional standard deviation of log variance moves substantially over

time in both samples and for both ways of measuring volatility. The time series standard

deviation is 18% in the full sample and 12% in the top 1000 sample; both are lower than the

time-series volatility of mean volatility.

The third row reports the time-series correlation between size dispersion at t (the cross-

sectional standard deviation of log size) and mean volatility (the cross-sectional mean of log

variance) at time t+1. The two are strongly positively correlated in the data: 0.72 in the full
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sample and 0.52 in the top sample. Similarly, size dispersion is strongly positively correlated

with volatility dispersion (the cross-sectional standard deviation of log variance) over time:

0.79 and 0.72, in Columns 1 and 2 respectively.

The last three rows investigate the cyclicality of moments of the size- and volatility

distribution. We compute aggregate size growth, measured as the weighted average growth

rate between t and t + 1 with weights measured at t that are equal to the relative size of a

firm. We correlate this aggregate growth rate with size dispersion at t (the cross-sectional

standard deviation of log size) and with the mean and the standard deviation of volatility

at t + 1 (the cross-sectional mean and standard deviation of log variance). Size dispersion

shows mild counter-cyclicality. Return-based average volatility seems counter-cyclical, and

so does the dispersion of volatility in the top group of firms. Sales-based volatility shows little

covariance with aggregate growth in the economy, but this could be because the volatility is

computed from observations that span five years of data.

5.2.3 Network Moments

This section directly examines the connection between the properties of the customer-supplier

network and firm-level volatility. To help us understand the customer-supplier network

in the U.S. economy, we use the data on economic linkages from Compustat (Cohen and

Frazzini 2008). The data covers a subset of of CRSP/Compustat firms observed from 1980

until 2009. Firms are required to report customers representing more than 10% of reported

sales.

We report several moments that directly pertain to the network in Table 11. All moments

are time-series averages. We report the median and 99th percentile of the cross-sectional dis-

tribution of the number of out-degrees Kout, the number of customers that a supplier is

connected to, and the number of in-degrees Kin, the number of suppliers a customer is con-

nected to. We also report the median and 99th percentile of the cross-sectional distribution

of the out- and in-degree Herfindahl indices Hout and H in. The latter indices for are defined
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as follows for a given firm i :

Hout
t,i =

∑
j∈Ci

w2
i,j,t

H in
t,i =

∑
j∈Si

w2
j,i,t

where Ci denotes the set of customers of firm i and Si is the set of suppliers of firm i. In

the data, we only observe connections measured from the perspective of the supplier, and

only those that represent more than 10% of the sales.8 As a result, the observed out-degree

distribution is a (potentially severely) truncated version of the true out-degree distribution.

The problem is less pronounced for the in-degree distribution, since the truncation occurs

based on supplier-reported data, not customer-reported data, but still highly relevant.

We find a median (truncated) out-degree of 1 and (truncated) 99th percentile of 3.2

connections. The median (truncated) in-degree is 0 with a 99th percentile of 2.9 connections.

The Herfindahl indices, which are also based on truncated degree information, are less biased

because large customers receive a large weight and are more likely to be in the database.

We calculate cross-sectional correlations of in- and out-degrees and in- and out-Herfindahls

at time t with log size at t and log variance at t+ 1. We find a strong negative relationship

between supplier size and out-Herfindahl; the correlation is -0.31. Large firms have a better-

diversified portfolio of customers, and hence small out-Herfindahls. We also find a strong

positive relationship between supplier volatility and out-Herfindahl: the correlation is 0.31.

Firms with a more diversified portfolio of customers and smaller Herfindahls have lower

volatility because they more effectively diversify the shocks that hit their customers. This

also explains the negative correlation between firm size and firm volatility in Panel B of Table

10. We find a zero correlation between truncated out-degree and size, but argue based on

the model that truncation generates a downward bias in this correlation. The data suggest

a positive 0.26 correlation between in-degree and size, but we argue based on the model

8Since reporting is voluntary for customers that represent less than 10% of sales, the data contain some
shares smaller than 10%. We replace those by zeroes. In the model we will apply the same truncation.
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Table 11: Network Moments

(1) (2) (3) (4) (5) (6) (7)
Links Links M1 M2 M3 M4 M5

Returns Sales

Panel A: Out-degree Moments

median Kout 1.00 – 2.12 2.06 0.46 1.29 0.81
99th % Kout 3.19 – 4.89 5.02 1.32 4.32 8.07
median Hout 0.05 – 0.51 0.40 0.03 0.82 0.03
99th % Hout 0.95 – 1.00 1.00 0.13 1.00 0.53
Corr(Kout

t , St) 0.00 – 0.18 0.04 −0.07 0.38 −0.49
Corr(Hout

t , St) −0.31 – −0.64 −0.59 −0.10 −0.69 −0.44
Corr(Hout

t , Vt+1) 0.31 0.14 0.55 0.70 0.30 0.64 0.58

Panel B: In-degree Moments

median Kin 0.00 – 2.20 2.18 0.00 1.48 2.90
99th % Kin 2.86 – 7.50 7.72 23.71 5.95 7.79
median H in 0.05 – 0.76 0.63 0.00 0.98 0.14
99th % H in 0.95 – 3.74 3.69 0.65 3.99 1.71
Corr(Kin

t , St) 0.26 – 0.44 0.41 0.22 0.37 0.19
Corr(H in

t , St) 0.20 – 0.37 0.42 0.19 0.28 0.07
Corr(H in

t , Vt+1) −0.04 −0.10 −0.12 −0.18 0.17 −0.13 0.01

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross-section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column 1 is calculated based on daily stock return
data, while the variance in Column 2 is based on 20 quarters worth of annual sales growth (in the current and
the next four years). Column 3 reports the corresponding moments for the benchmark model (M1). Column
4 shows the first-degree approximation of the benchmark model (M2). Columns 5-7 show three variations
of the full-degree network model for different parameter values, described in the main text. Log variances
in the model are constructed with added estimation noise to make them comparable to the moments in the
data.

that truncation induces an upward bias in this correlation. This provides evidence that the

likelihood of a connection between a supplier and a customer does not strongly depend on

the customer’s size. We find a zero (modest positive) correlation between in-Herfindahl on

the one hand and volatility (size) on the other hand.
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5.3 Simulation Results

5.3.1 Benchmark Calibration

The benchmark model generates a large amount of cross-sectional heterogeneity in firm size.

Column 3 of Table 9 shows that size dispersion averages 0.95, close to the observed value

reported in column 2. The inter-quartile range for log firm size is [10.86,12.08], close to the

[10.78-12.25] range in the top-33% sample. At the extremes of the distribution, the model

also compares favorably to the data. Panel B shows that model 1 is capable of generating the

range of growth rates of size that we see in the data. The dispersion in growth rates is 0.32,

matching the one in the top-33% sample (0.33).9 Panel C shows that size dispersion moves

around dramatically over time in the model and is very persistent. The model overstates the

variability of the size dispersion (0.26 compared to 0.14 in column 2 and 0.24 in column 1),

but not that of the dispersion in size growth rates (0.06 versus 0.11 in column 2 and 0.15 in

column 1). The benchmark model implies too much firm concentration: the economy-wide

Herfindahl index is 0.028 compared to 0.012 in the data. We will return to an alternative

calibration that remedies some of these issues.

Column 3 of Table 10 shows that the model generates high average firm volatility of 35%,

in between the return volatility in the full sample of 40% and that in the top-33% sample

of 30%. Average sales-based volatility in the data is lower at 29% and 24%, respectively.

The model is capable of generating a wide range of volatility outcomes. The cross-sectional

dispersion in volatility is 0.40, compared to 0.73 for the return-based measure (column 2),

and 1.42 for the sales-based measure. The model generates about the right 75th percentile

for volatility while the 95th percentile is 5% too low. The least volatile firms have a volatility

of 26% in the model, but only 17% in the return data. Panel B shows that the model

generates a -39% correlation between size and volatility at the firm level, similar to the -33%

in the data. Large firms are less volatile. That relationship between log variance and log

9Growth rates are symmetric in the model, as well as in the full sample, but not in the top-33% sample.
The latter is due to selection not present in the model.
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size is somewhat less steep as in the data (-0.16 versus -0.23). Panel C shows that the model

generates substantial variability over time in both the cross-sectional mean of firm variance

and in its dispersion, but still under-predicts these moments compared to the data. The

model generates a high volatility of aggregate growth rates of 19%, close to the 20% in the

data.

In the time-series, size dispersion is strongly positively correlated with both the mean

of the log firm variance distribution (0.92 correlation) and its dispersion (0.86 correlation).

These correlations are high in the data as well (0.71 and 0.76). The top panel of Figure 12

shows a 1000-period simulation of size dispersion and the mean of log variance, while the

bottom panel plots size dispersion against the dispersion of firm variance. Size dispersion is

comoving positively with both average variance and its dispersion.

Table 11 shows the network-related properties of the model. Like in the data, the model

generates a small median number of supplier-customer relationships after truncation: 1 in

the data, 2.12 on average in the model. The 99th percentile of the truncated out-degree

distribution is 4.89 in the model and 3.19 in the data. Truncation severely affects the

number of out-degrees. The median of the untruncated Kout distribution in the model is

3.90 and the 99th percentile is 96.54. In the model, larger firms have more connections.

The cross-sectional correlation between the truncated out-degree and log size is 0.18, which

is 0.42 lower than the 0.60 correlation between the untruncated out-degree and log size.

This downward bias means that the observed correlation between truncated out-degree and

log size in the data (0.00) is downward biased. Applying the model-generated bias, the

data would show a strongly positive correlation between untruncated out-degree and log size

(albeit a smaller one as in the model). That is, larger suppliers have more connections.

The converse problem occurs for the correlation between in-degree and log size. The

observed value of 0.26 is a bit smaller than the 0.42 value in the benchmark model, where

both numbers are based on the truncated in-degree distribution. However, the correlation

between untruncated out-degree and log size 0.06 in the model, which implies that this
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Figure 12: Simulated Size Dispersion, Mean Variance, and Variance Dispersion
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Figure 13: Truncated versus Untruncated Degree Distributions
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moments is severely upward biased due to truncation. The magnitude of the bias is such

that the (unobserved) correlation between untruncated in-degree and log size could easily

be zero, as it is in the model. That zero correlation between customer size and number

of connections is an important assumption of the model. Figure 13 shows the truncated

out-degree and in-degrees of the benchmark model in the left column and the untruncated

counterparts in the right column. The truncated versions are dramatically different from the

untruncated degree distributions.

The model matches some properties of Herfindahls, but not others. The main short-

coming of the benchmark calibration is that its truncated out-degree Herfindahl is too high.

The median is 0.51, much higher than the 0.05 value we observe in the data. The reason

62



is that the number of connections a typical supplier has is small (the median out-degree is

3.9), and that large customers receive a large weight (wij is strongly increasing in size of the

supplier Sj). Model 5 partially remedies these issues. The model generates a strong nega-

tive correlation between out-degree Herfindahl and size and a positive correlation between

out-degree Herfindahl and volatility. Both are important features of the data. The model

also matches the correlation pattern between in-Herfindahls and size and volatility. In the

model, truncated and untruncated Herfindahls are very similar, suggesting no evidence for

bias in the empirical counterparts.

Finally, we re-estimate the volatility factor regressions of Table 3. The corresponding

R2s for total volatility from left to right are 51%, 57%, and 59%. Thus the model has a

strong volatility factor structure, like the data.

5.3.2 Alternative Models

To better understand the various parts of the model, we explore a number of alternative mod-

els. Model 2 is the first-degree approximation to the benchmark model, with all parameters

left unchanged. It produces dramatically different size and volatility results, underscoring

the importance of network persistence. Out-degree Herfindahls in M2 are lower than in

M1. Because of larger and less concentrated networks, firms are better able to diversify the

shocks that hit their customer network. Mean volatility (26%) and the dispersion in volatil-

ity across firms (25%) are substantially lower in the first-degree approximation as in the

full-degree network. The median firm is 30% smaller while the largest firms are 60% smaller

than in M1. In terms of macro moments, the size dispersion fluctuations almost completely

disappear (4% time-series standard deviation versus 26%). The same is true for average firm

volatility (3% time-series standard deviation versus 28%), aggregate growth volatility (4%

versus 19%), and the volatility of the cross-sectional dispersion of volatility. M2 produces a

lower economy-wide Herfindahl index, bringing it closer to the observed one. The dramatic

reduction in aggregate volatilities shows that higher-order connectivity amplifies shocks and
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is crucial in producing the patterns in aggregate moments we observe in the data.

Model 4 tells a similar story. Here, we revert to the full-degree network, but lower

the persistence parameter of the network to γ = 0.75. Because lowering γ lowers average

volatility, we adjust the volatility of the shocks σ upwards to 0.30. This model behaves

similarly to M2 in that it has a more compact firm volatility distribution and much lower

variability in size dispersion, mean variance, and variance dispersion than M1. Unlike model

2, M4 has a much higher economy-wide Herindahl index (0.093) indicating strong firm size

concentration. This arises form the higher shock volatility which helps to produce large firms

with many connections.

In Model 3, we modify the probability that a supplier is connected to a customer and make

it less steep in size. This radically changes the average number of (untruncated) out-degrees

from 9.48 in the benchmark to 824, while the truncated average out-degree actually falls.

The median (truncated or untruncated) out-Herfindahl drops from 0.51 to 0.03, bringing it

in line with the data. Because smaller firms now have bigger networks, they achieve better

diversification. The dispersion of volatility is much lower (0.06 in M3 versus 0.40 in M1) and

this dispersion is almost constant over time. The cross-sectional correlation between size and

volatility becomes positive, but there is much less dispersion in volatility in the first place.

Model 5 gives large customers a smaller weight in the network, which reduces the median

out-degree Herfindahl from 0.51 in M1 to 0.09 in M5; the truncated counterpart is 0.03

compared to 0.51 in M1. The average number of (untruncated) connections is 30 and the

median is 13. The larger number of connections helps to further lower the Herfindahls. M5

continues to generate substantial firm size dispersion and the right amount of average firm

volatility, in part because of the higher shock volatility (σε =0.25 versus 0.22). However,

the volatility dispersion (0.13) is severely curtailed like in M3 (0.06). Aggregate moments

such as size dispersion, mean variance, variance dispersion, and aggregate growth display

meaningful time variation, but less than in the benchmark model. This model has arguably

a more realistic network structure, and continues to generate interesting variation in the
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key moments of interest. The benchmark model shows that to explain the kind of variation

in first and second moments of size and volatility distribution requires more concentrated

networks.

6 Conclusion

We document new features of the joint evolution of the firm size and firm volatility distri-

bution and propose a new model to account for these features. In the model, shocks are

transmitted upstream from customers to suppliers. Firms sell products to an imperfectly

diversified portfolio of customers. The larger the supplier, the more customer connections

the supplier has, the better diversified it is and the lower its volatility. Large customers have

a relatively strong influence on their suppliers, so shocks to large firms have an important

effect throughout the economy. When the size dispersion of the economy increases, such

large firms become more important and many firms’ basket of customers becomes less di-

versified. In those times, average firm volatility is higher as is the cross-sectional dispersion

of volatility. We provide direct evidence of such linkages, and use the supplier-customer

relationship data to calibrate our model.
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A Inclusion of Private Firms

We use Census data private sector firms sorted by employment. The data is provided by the

U.S. Census Bureau, Business Dynamic Statistics. The sample covers 1977-2009. The data

is annual. The census reports data in 12 employment bins ranging from 1− 4 at the low end

to 10, 000+ at the high end. We construct the same bins using the Compustat employment

data.

We also created a spliced series that divides the 10,000+ binds into 25 sub-bins using an

imputation from the Compustat size data. At the start of the sample, Census reports 728

firms with more than 10,000 employees, while Compustat reports 677. So, we have fairly

comprehensive coverage at the start of the sample. However, at the end of the sample, there

are 1,975 with 10,000+ firms,only 1,016 of which show up in Compustat. There are more

large, private firms at the end of the sample.

Figure 14 plots the cross-sectional variance of log employment in Census and Compustat

data. The evolution of the size distribution when considering the entire universe of firms

seems similar to the one in Compustat. The correlation between the cross-sectional variance

of log size in Compustat and the spliced series (shown in Panel A) is 0.62. The correlation

between the non-spliced Census measure (shown in Panel B) and the Compustat measure is

0.65.10 Hence, the secular changes in the size distribution that we have documented are not

specific to publicly traded firms.

Finally, figure 15 plots the entry and exit rates for U.S. firms. The figure documents

a secular decline in entry and exit rates over the sample. These secular changes may have

contributed to the changes in the size distribution that we have documented.

10Note that the variance of log employment in the Compustat data is much larger than the variance in
the Census data.
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Figure 14: Variance of Log Employment: Compustat vs. Census Data
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Notes: The figure plots the cross-sectional variance of log employment in the Compustat and Census data
(left-hand-side axis). The data is annual and the sample covers 1977-2009. Source: U.S. Small Business
Administration, Office of Advocacy, from data provided by the U.S. Census Bureau, Business Dynamics
Statistics.

Figure 15: Firm Dynamics
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and the sample covers 1977-2009. Source: U.S. Small Business Administration, Office of Advocacy, from
data provided by the U.S. Census Bureau, Business Dynamics Statistics.
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